
F.6 – North Ridge - Bellbird Heights Urban Release Area

DESCRIPTION

The Bellbird Heights Urban Release Area includes approximately 121.5 ha of land adjoining the suburb of Bellbird Heights, to the south of Cessnock CBD. The area represents a natural extension of the suburb of Bellbird Heights with approximately 305 residential lots to be provided along the western area of the site.

An E2 Environmental Conservation zone is located to the east of the residential land. The area is ecologically significant and will be managed in perpetuity to maintain and improve its conservation values.

The area to the north of the site will be zoned RU2 - Rural Landscape, retained for continued mining operations until Austar Coal Mining Lease (ML) 1345 expires.

Through the implementation of the Bellbird Heights Urban Release Area, Cessnock City Council wishes to establish controls and guidelines to facilitate high quality residential development that considers the constraints of the area. Specific development controls are included to ensure that the development will complement the character of the existing locality and will have minimal adverse impacts on the natural environment.

Development Requirements

All development applications shall demonstrate consistency with the following requirements.

1 Staging Plan

Staging of the Urban Release Area should be consistent with the 'North Ridge' Bellbird Heights Staging Plan (as shown in Figure 1). The 'North Ridge' Bellbird Heights Staging Plan is to be read in conjunction with the Bellbird Heights Voluntary Planning Agreement.

Sub-stages may be considered provided that they are consistent with infrastructure provision and sequencing.

Subdivision Certificates within Stages 6 or 7 shall not be released until chitter emplacement and capping layer, subsurface drainage layer and storm water diversion drains have been completed in ML1345, MPL 233 and MPL204.

No construction certificate is to be issued for any residential dwelling within ML1345 or the 100m buffer zone whilst ever the mining lease remains in place

2 Transport Movement Hierarchy

The road layout should be consistent with the Indicative Layout Plan as shown in Figure 2. Development applications for subdivisions must ensure that road networks connect to other development areas in a logical hierarchy of street function.

Shared footpath/cycleway shall be constructed to Wollombi Road as shown in the Indicative Layout Plan.

Suitable transport access and connectivity within the site and to adjoining areas shall be maintained at all times for motor vehicles, pedestrians and cyclists.

3 Overall Landscaping Strategy

A Vegetation Management Plan (VMP) must be submitted with the first development application to subdivide the land for residential purposes.

The VMP shall identify a strategy to appropriately manage the natural watercourse and incorporate a landscaping plan to enhance the retention of on site vegetation. Any future landscaping should aim to utilise locally occurring species

The subdivision design is to provide for lot frontages addressing streets, and drainage reserves.

A 1.8m high chain link fence shall be erected for the full length of the boundary between the residential land and the conservation and rural zoned land to prevent unauthorized motorbike and pedestrian access to this area. The fence is required to protect the public from potential mine subsidence and to assist with the long term conservation of the land.

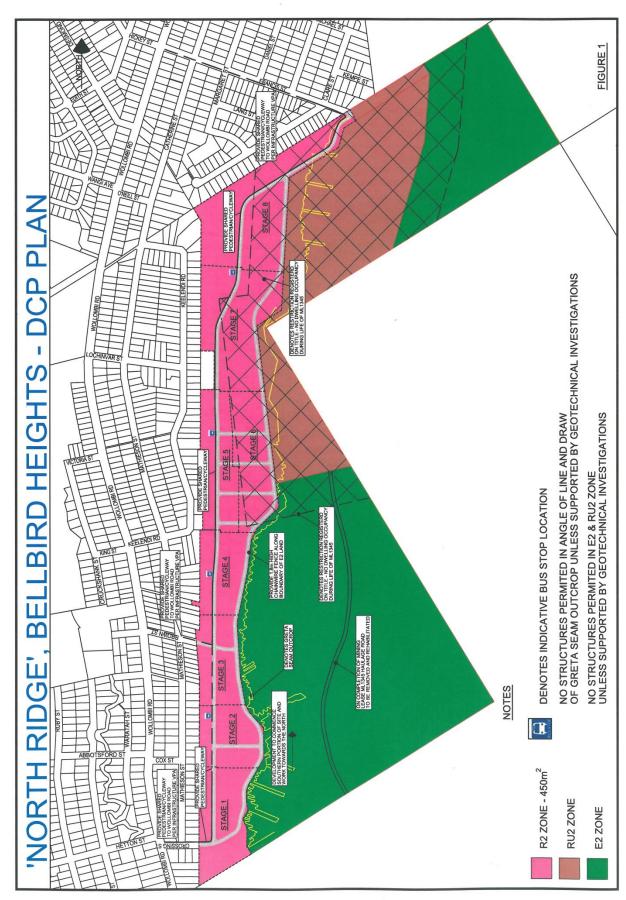


Figure 1: Staging Plan

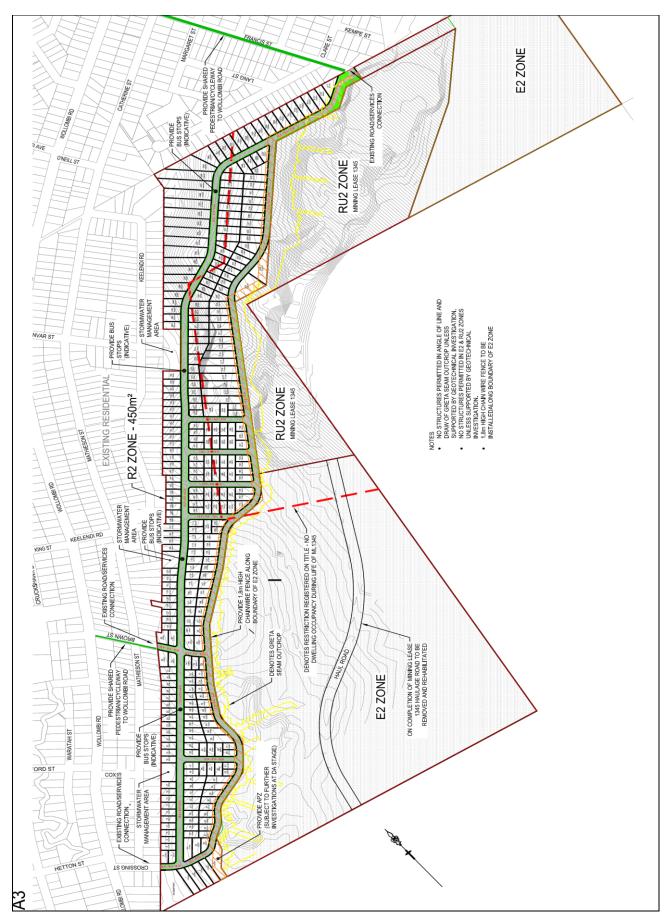


Figure 2: Indicative Layout Plan

4 Passive and Active Recreational Areas

There are no specific requirements in this regard.

5 Stormwater and Water Quality Management Controls

There are no specific requirements in this regard. The Cessnock DCP 2010 generally applies.

6 Amelioration of Natural and Environmental Hazards

Natural Hazards

Bushfire

Future development shall be assessed in accordance with the NSW Rural Fire Service's 'Planning for Bushfire Protection Guidelines' 2006 and provide Asset Protection Zones (APZs) configured in accordance with the Guidelines. In particular, the future subdivision must have regard to the following requirements:

- APZs of 20 25m is required between retained Open Forest vegetation and future dwellings within the site.
- Assessment in accordance with AS3959 2009 is required to confirm that future dwellings within the lots will be able to comply with the required BALs. Future applications are to be assessed under Section 79BA of EP&A Act for each individual dwelling upon application.
- The proposed internal access roads are to comply with PBP as detailed in Section 6 of this report.
- Reticulated water is extended into the site. The development will be linked to the water pressure mains and the proposed internal fire hydrant spacing, sizing and pressures are to comply with AS 2419.1-2005 Fire Hydrant Installations - System design, installation and commissioning (2005).

Environmental Hazards

Contamination

Any future development of the site shall have regard for the provisions of SEPP 55 – Remediation of Land. In particular, future development shall have regard for the findings and recommendations of the Phase 2 Contamination Assessment Bellbird Heights NSW prepared by Coffey Environments, dated 13 June 2013, which is reproduced as Appendix A.

Geotechnical

Prior to any subdivision taking place, further details are to be provided to the Mine Subsidence Board confirming that developable land does not encroach into the area of shallow mine works by applying an 'angle of draw and factor of safety' from Greta seam sub-crop line.

No development is to occur within the 'angle of draw and factor of safety' from Greta seam sub-crop line, unless supported by detailed geotechnical investigations.

No development is to occur within the RU2 or E2 zones unless supported by detailed geotechnical investigations.

Entry to the E2 Environmental Conservation zoned land shall be restricted to:

- use of the Austar Mine haulage road;
- subsidence management; and
- conservation management.

Prior to any subdivision taking place a long term management plan shall be prepared and approved by the Mine Subsidence Board addressing the issue of shallow mining across the entire site. The management plan needs to:

- a) Take into account the implications of developing the western unmined section of the R2 Low Density Residential land to the eastern section of the site; and
- Identify fencing and signposting methods to restrict unauthorised access to the subsidence area and address the regular monitoring and remediation of subsidence events.

Mining Lease (ML) 1345

The site contains an operational spoil emplacement pit operated by ML 1345 (see Figure 3).

A haulage road currently extends across the site for access to the spoil emplacement pit.

To protect the ongoing operation of ML 1345, the following is required:

- a section 88B Restriction to prevent any residential development within a 100m buffer zone around ML 1345 until the rehabilitation of the Mining Lease is completed.
- a carriageway (ROW) in favour of ML 1345 will be required over the haulage road to provided unrestricted access to and from the spoil emplacement pit.

The section 88B and ROW cannot be varied, modified or released without the agreement of Council and the NSW Department of Resources and Energy.

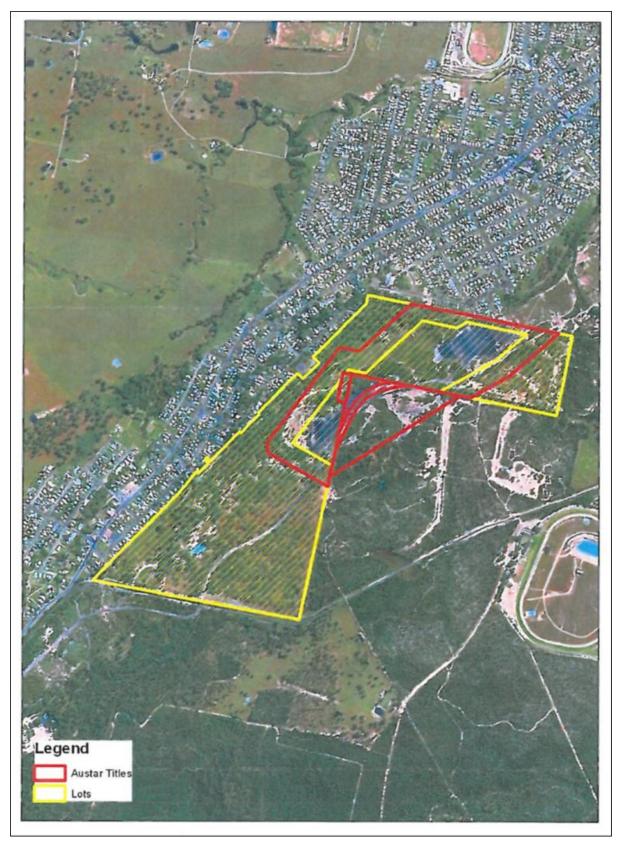


Figure 3 – Austar Coal Mining Lease 1345 – 100m buffer zone identified in red.

7 Significant Development Sites

There are no specific requirements in this regard.

8 Residential Densities

There are no specific requirements in this regard.

9 Neighbourhood Commercial and Retail Uses

There are no specific requirements in this regard.

10 Provision of Public Facilities and Services

Future staging plans must be prepared in consultation with service authorities. In particular, Hunter Water must be consulted to ensure that the 390 Equivalent Tenements (ET) development cap on the Pelton Reservoir sub-system is not exceeded.

11 Sewer and Water Reticulation

Sewer and water reticulation shall be provided in accordance with the requirements of the Hunter Water Corporation.

12 Voluntary Planning Agreements

Any future development must have regard for the Planning Agreements applying to the land:

- Local Infrastructure Planning Agreement 19 November 2014; and
- On-site Biodiversity Offset Planning Agreement 19 November 2014.

REFERENCES

APPENDIX A Phase 2 Contamination Assessment Bellbird Heights NSW (Coffey Environments, 13 June 2013)

APPENDIX A

Phase 2 Contamination Assessment Bellbird Heights NSW (Coffey Environments, 13 June 2013)

PHASE 2 CONTAMINATION ASSESSMENT BELLBIRD HEIGHTS, NSW

Winton Partners Bellbird Pty Ltd

ENAUWARA04363AA-R01 13 June 2013

Written/Submitted by:

Damien Hendrickx Environmental Scientist Reviewed by:

Laurie Fox
Principal Environmental Geologist

13 June 2013

Winton Partners Bellbird Pty Ltd Level 1, 106 King Street SYDNEY NSW 2000

Attention: Jamie Boswell

Dear Jamie

RE: PHASE 2 CONTAMINATION ASSESSMENT BELLBIRD HEIGHTS, NSW

Coffey Environments Pty Ltd (Coffey) is pleased to present the findings of our Phase 2 Contamination Assessment for the above site.

We draw you attention to the enclosed sheet entitled "Important Information about Your Coffey Environmental Report", which should be read in conjunction with the report.

We trust that our report meets with your requirements. If you have any questions regarding this matter please contact Damien Hendrickx or the undersigned in our Warabrook Office.

For and on behalf of Coffey Environments Australia Pty Ltd

Laurie Fox

Principal Environmental Geologist

RECORD OF DISTRIBUTION

No of copies	Report File Name	Report Status	Date	Prepared for	Initials
1	ENAUWARA04363AA- R01.pdf	Final	13 June 2013	Winton Partners Bellbird Pty Ltd	
1	ENAUWARA04363AA- R01.doc	Final	13 June 2013	Coffey Environments Australia Pty Ltd	

CONTENTS

1	INTRODUCTION	1
1.1	General	1
1.2	Objectives	1
1.3	Scope of Work	2
2	SITE DESCRIPTION	3
2.1	Site Location and Identification	3
2.2	Site Observations	3
2.3	Interview	4
2.4	Site Topography and Drainage	4
2.5	Soils and Geology	4
2.6	Hydrogeology	5
3	SUMMARY OF CONTAMINATION ASSESSMENT	6
4	POTENTIAL AREAS AND CHEMICALS OF ENVIRONMENTAL CONCERN	7
5	ASSESSMENT CRITERIA	8
6	FIELD AND LABORATORY PROGRAMME	9
6.1	Sampling Plan	9
6.2	Soil Sampling	10
6.3	Laboratory Analysis	10
7	QUALITY ASSURANCE / QUALITY CONTROL AND DATA USABILITY	11
8	RESULTS OF INVESTIGATION	12
8.1	Subsurface Conditions	12
8.2	Laboratory Results	13

CONTENTS

9	DISCUSSION	13
9.1	Fill / Mining Overburden Area	13
9.2	Building Footprints	14
9.3	Car Body and Low-Lying Areas	14
9.4	Management of Mine Overburden	14
9.4.1	Offsite Disposal of Soils	14
10	CONCLUSION AND RECOMMENDATIONS	15
11	LIMITATIONS	16
REFER	REFERENCES	

LIST OF ATTACHMENTS

Important Information about your Coffey Environmental Report

Tables

Table LR1: Soil Analytical Results

Table LR2: Duplicates and Triplicates

Table LR3: Rinsates and Trip Blanks

Figures

Figure 1: Site Location

Figure 2: Investigation Areas

Figure 3A: Fill / Mine Overburden Area – Sample Locations

Figure 3B: Building Footprint 1 – Sample Locations

Figure 3C: Building Footprint 2 – Sample Locations

Figure 3D: Building Footprint 3 – Sample Locations

Figure 3E: Low Lying Areas and Car Body – Sample Locations

Appendices

Appendix A: Site Photographs

Appendix B: Data Validation Report

Appendix C: Test Pit Logs and Explanation Sheets

Appendix D: Laboratory Reports and Chain of Custody Documentation

ı

ABBREVIATIONS

AEC	Area Of Environmental Concern
AHD	Australian Height Datum
C6-C36	Hydrocarbon chainlength fraction
Bgs	below ground surface
ВТЕХ	Benzene, Toluene, Ethylbenzene and Xylenes
сос	Chemical of Concern
μg/L	micrograms per litre
mg/kg	milligrams per kilogram
mg/L	milligrams per litre
NATA	National Association of Testing Authorities
NEHF	National Environmental Health Forum
NEPM	National Environment Protection Measure
NSW EPA	Environment Protection Authority of New South Wales
NSW DEC	Department of Environment and Conservation Of New South Wales
NSW DECC	Department of Environment and Climate Change of New South Wales
NSW DECCW	Department of Environment, Climate Change and Water of New South Wales
NSW OEH	Office of Environment and Heritage of New South Wales
ОСР	Organochlorine Pesticide
РАН	Polycyclic Aromatic Hydrocarbon
РСВ	Polychlorinated Biphenyl
Ppm	parts per million
PQL	Practical Quantitation Limit
QA	Quality Assurance
QC	Quality Control
RPD	Relative Percent Difference
SOP	Standard Operating Procedures
-	

ABBREVIATIONS

SS	Surface Sample
ТР	Test Pit
ТРН	Total Petroleum Hydrocarbon

EXECUTIVE SUMMARY

Coffey Environments Australia Pty Ltd (Coffey) was commissioned by Winton Partners Bellbird Pty Ltd (Winton) to undertake a Phase 2 Contamination Assessment (CA) at the proposed land rezoning site at Bellbird Heights, NSW. The objectives of the CA were to assess the soil contamination status across the filled areas and footprints of former buildings, assess the dumped household waste at the site for the presence of Asbestos Containing Materials (ACM), and assess the contamination status of surface water or sediment in the low-lying areas at the site.

Based on Coffey's previous contamination assessments undertaken at the site, four Areas of Environmental Concern (AECs) were identified. The AECs related to former buildings, and mine infrastructure, placement of mine overburden, fill and household waste stockpiles and existing low lying areas. It was assessed that these AECs represented a low to medium risk of soil contamination.

In order to assess the contamination status of the areas of environmental concerns, a sampling programme was undertaken, involving the excavation of test pits, the collection of surface soil and sediment samples, and collection of a potential asbestos fragment sample. Selected samples were analysed for a suite of potential COC's, including heavy metals, hydrocarbons, pesticides and asbestos. In order to assess potential acid mine drainage issues at the site, selected samples were also analysed for pH values.

The laboratory results indicated low concentrations of chemicals of concern and no asbestos in soil was identified. Minor exceedences of the phototoxicity criteria for arsenic, cadmium, nickel and zinc were also recorded. Low soil pH (<4.0) was recorded in areas of mine overburden. The exceedences are not considered to represent a risk to the environment given the soil types, though the low pH may inhibit some plant species.

The existing mine overburden material will require management depending on the final lot layout and end use. This would likely include the incorporation of a capping layer, subsurface drainage layer and storm water diversion drains.

Based on the results of the investigations, the site is considered suitable, from a contamination point of view, for the proposed residential development.

1 INTRODUCTION

1.1 General

This report presents the findings of a Phase 2 Contamination Assessment (CA) undertaken by Coffey Environments Australia Pty Ltd (Coffey) for the proposed land rezoning at Bellbird Heights, NSW. The "site" is defined as the area of the proposed land rezoning, as shown on Figure 1.

The Phase 2 CA was commissioned by Winton Partners Bellbird Pty Ltd (Winton) in response to a Coffey proposal (Reference ENAUWARA04363AA-P02 dated 2 April 2013) and following the recommendations provided in the Supplementary Contamination Assessment undertaken by Coffey at the site (Reference ENAUWARA04363AA-L01 dated 15 March 2013).

The site occupies part of Lot 1 DP 11643334, and is approximately 39 hectares in area. Coffey understands that Winton is proposing to rezone the site as low density residential as part of the "Gateway" process applied by Cessnock City Council.

Coffey's Supplementary Contamination Assessment involved a review of previous investigations, a desktop study and a site walkover to identify Areas of Environmental Concern (AECs). Four AECs were identified, relating to footprints of former buildings, placement of mine overburden, fill and household waste, low lying areas.

Following review of the draft supplementary environmental assessment, Winton requested further investigations be undertaken to assess the potential impact the AECs may have on the proposed rezoning.

This draft report has been written in accordance with the relevant sections in the NSW OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites.* This report must be read in conjunction with the attached sheet entitled "*Important Information about your Coffey Environmental Report*", which can be found at the end of this report.

1.2 Objectives

The objectives of the Phase 2 CA were to:

- Assess the soil contamination status across the filled areas and footprints of former buildings;
- Assess the dumped household waste at the site for the presence of Asbestos Containing Materials (ACM); and
- Assess the contamination status of surface water or sediment in the low-lying areas at the site.

1.3 Scope of Work

To achieve the objectives, the following scope of work was undertaken:

- A brief review of the previous contamination assessments undertaken at the site;
- A site walkover by a Coffey Principal Environmental Geologist;
- · Carry out and interview with a former mine employee;
- Field investigations, involving:
 - Excavation of 15 test pits, and soil sampling;
 - Collection of 32 surface soil samples;
 - o Collection of two sediment samples from low-lying areas; and
 - o Collection of one fragment sample of potential Asbestos Containing Materials (ACM).
- · Laboratory analysis of selected samples; and
- Data assessment and preparation of this Phase 2 CA report.

2 SITE DESCRIPTION

2.1 Site Location and Identification

General site information is provided below in Table 1.

TABLE 1 – SUMMARY OF SITE DETAILS

Site Address:	The property address is 40-42 Francis Street, Bellbird Heights NSW. The 'site' for the purpose of this report is defined as the area proposed for residential land rezoning, as shown on Figure 1 with access from Francis Street and Brown Street.	
Approximate Total Site Area:	39 hectares.	
Title Identification Details	The site occupies part of Lot 1 DP 11643334, in the Parish of Cessnock and the County of Northumberland.	
Previous Landuse:	Historical evidence indicates that previously the site was part of mining operations associated with the Aberdare Extended Colliery and Bellbird Colliery.	
Current Landuse:	The site is vacant and consists mainly of a grass cover and remnant bushland.	
Proposed Landuse:	The site is proposed to be rezoned for low-density residential purposes.	
Adjoining Site Uses:	 Residential properties to the north and west; and Vacant land, bushland and former mining operations to the east and south. 	
Site Co-ordinates:	The centre of the site is located approximately at 32'51'00"S, 151'19'57"E.	

2.2 Site Observations

The site description is based on the site observations made during Coffey's Supplementary Contamination Assessment and a site walkover undertaken by a Coffey Principal Environmental Geologist and Coffey Principal Geotechnical Engineer on 15 April 2013.

Site photographs are presented in Appendix A. Observations relevant to this report are outlined below:

- Test pits TP4 to TP9 were excavated within mine overburden which consisted of weathered
 rock that showed evidence of oxidation of sulphides (straw coloured mineral jarosite, on
 exposed surfaces (Photo 1 and 2)
- The mine overburden zone extended about 100m west of the Austar coal washery reject emplacement;
- A supply of lime (assumed to be agricultural lime) and evidence of lime spreading over the emplacement area was apparent (Photo 3)
- There was little visual evidence of sulphide oxidation within the exposed rocks along the cliff line (Photo 4)

2.3 Interview

A phone interview with Mr Peter Turnbull, a former mine employee, was carried out on 2 May 2013. Mr Turnbull worked as a clerk from 1968 for 12 months and a surveyor from 1976 for approximately 2 years. Mr Turnbull indicated the following:

- The former buildings located in the eastern portion of the site (Building footprint 1 and Building foot print 2) were managers' residences
- The manager's residences were constructed with brick piers and timber cladding.
- The residences were removed between 1976 and 1978 and the site was cleaned for cattle farming.
- Mr Turnbull had no knowledge of Building foot print 3, located along the eastern boundary of the site, indicating that it must have been removed prior to 1968.
- The pillars (located offsite approximately 150m to the south west of Building foot print 1) are remnants of the former coal bins used for the loading of coal into trucks.
- Also located offsite (in the vicinity of the pillars) were a former bathhouse and workshops for maintenance and metal works.

2.4 Site Topography and Drainage

Reference to the 1:25,000 Cessnock Topographic Map indicates that the site is situated within a region of gently to moderately undulating topography with a broad elongated hilltop along the western boundary. The elevation of the site ranges from approximately 80m AHD to approximately 120m AHD. Site slopes are primarily gentle (<10°), though some steeper slopes are located near the northern and western site boundaries. A vertical cliff line (about 3.0m in height) exists in the eastern half of the site.

Drainage is likely to occur mainly by land infiltration. Excess water is likely to follow the site slopes and accumulate in pools in the eastern and southern sections of the site.

2.5 Soils and Geology

A review of the 1:100,000 Newcastle Coalfield Geological Map indicates the site is underlain by the Branxton Formation of the lower Maitland Group overlying the Greta Coal Measures. The underlying bedrock is likely to consist of sandstone, conglomerate and siltstone intersected with coal seams. These rocks typically weather to sandy clays and clays of low to medium plasticity.

The Greta Coal Measures are known to have a high sulphide content having formed during a marine regression (brackish water conditions). The supply of sulphates from the saline water in combination

with iron and carbon from organic matter, has led to the formation of pyrite (an iron disulphide FeS₂) within the coal measures. Upon exposure the pyrite (sulphide) can oxidise and produce acid mine drainage as water percolates through mine wastes and overburben.

2.6 Hydrogeology

Perched groundwater beneath the site is anticipated to be present in residual soils between approximately 5m and 10m below ground surface (bgs). Regional groundwater is anticipated to be present in the underlying bedrock at depths greater than 20m bgs. Groundwater flow direction from beneath the site is anticipated to flow to the west and discharge to Bellbird Creek, located approximately 500m west of the site.

A search of registered groundwater bores located within a 2km radius of the site was undertaken. The search revealed that there are three bores registered within this radius. Details were provided for these bores, and are summarised below in Table 2.

TABLE 2 - SUMMARY OF GROUNDWATER BORE DATA

BORE ID	STATUS	PURPOSE	APPROXIMATE DISTANCE FROM SITE	STANDING WATER LEVEL (mbgl)
GW200873	Equipped	Monitoring Bore	2km north-east (hydraulically cross or up gradient)	4.50
GW200874	Supply Obtained	Monitoring Bore	2km north-east (hydraulically cross or up gradient)	4.10
GW200875	Equipped	Monitoring Bore	2km north-east (hydraulically cross or up gradient)	5.20

NOTES:

mbgl= metres below ground level

3 SUMMARY OF CONTAMINATION ASSESSMENT

Coffey undertook a supplementary contamination assessment in 2013 (Reference ENAUWARA04363AA-L01 dated 15 March 2013). That report should be read in conjunction with the current Phase 2 Contamination Report. The assessment was undertaken in order to assess if the land contamination status of the site had significantly changed since two previous contamination assessments were undertaken.

The objectives of the assessment were to:

- Assess whether the land contamination status of the site is likely to have changed since the two
 previous environmental assessments were undertaken; and
- Provide recommendations on the need for further stages of assessment, if required.

In order to meet the above objectives, the following works were undertaken:

- A review of Coffey's two previous assessments undertaken on the site in light of current NSW EPA Guidelines for assessing contaminated land and the NSW regulatory framework;
- A review of supplementary historical information including aerial photographs, section 149 planning certificate and NSW Office and Environment and Heritage (OEH) records;
- A site walkover to assess current site conditions; and
- Preparation of a letter report.

Based on the findings of the supplementary contamination assessment, four AECs were identified based on historical use of the site for coal mining. These AECs included former buildings, and mine infrastructure, placement of mine overburden, fill and household waste stockpiles and former and existing low lying areas. It was assessed that these AECs represented a low to medium risk of soil contamination.

The site was considered to be suitable for the proposed residential subdivision provided the following recommendations were carried out:

- Further soil sampling and analysis of the fill materials near the former buildings, infrastructure and overburden;
- Sampling and analysis of stockpiles and existing low lying areas; and
- Further assessment of the potential for acid mine drainage to impact the site.

4 POTENTIAL AREAS AND CHEMICALS OF ENVIRONMENTAL CONCERN

The potential AECs and chemicals of concern (COCs) identified based on the results of the previous assessments are outlined below in Table 3.

TABLE 3 - POTENTIAL AECS AND COCS

AEC	POTENTIAL CONTAMINATING ACTIVITY	POTENTIAL COCS	LIKELIHOOD OF CONTAMINATION*	COMMENT
1 (Former buildings and mining infrastructure)	Hazardous materials used in the construction of buildings	Asbestos, Lead in Paint, Heavy Metals	Low to Medium	No evidence of former buildings was identified during the site walkover.
2 (Mined areas and overburden)	Mining operations and stockpiling of CWR	Heavy Metals, TPH, BTEX, PAH, Acidic Leachate	Low to Medium	Coffey's previous assessment indicates that CWR in former mining areas to the east may produce acidic leachate. No CWR was observed on the site.
3 (Fill mounds and household waste)	Importation of fill from unknown sources. Uncontrolled dumping of household waste possibly containing ACM	Heavy Metals, TPH, BTEX, PAH, OCP, PCB, Asbestos	Low	Coffey's previous assessments indicate that significant contamination is unlikely to be encountered in fill.
4 (Low lying areas)	Potentially contaminated surface water draining from the former mining areas	Heavy Metals, TPH, BTEX, PAH	Low	The quality of the surface water in the low lying areas is not known.

NOTES:

Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc; OCP - Organochlorine Pesticides; OPP – Organophosphorus Pesticides; TPH – Total Petroleum Hydrocarbons; BTEX – Benzene, Toluene, Ethylbenzene and Total Xylenes; PAH – Polycyclic Aromatic Hydrocarbons.

^{* =} It is important to note that this is not an assessment of the financial risk associated with the AEC in the event contamination is detected, but a qualitative assessment of the probability of contamination being detected at the potential AEC.

5 ASSESSMENT CRITERIA

The investigation levels for soil were established based on the following references:

- NSW DEC Guidelines for the NSW Auditor Scheme (Second Edition) (DEC, 2006);
- NSW EPA, Guidelines for Assessing Service Station Sites, (NSW EPA, 1994); and

National Environmental Protection Council (NEPC) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM) (NEPC, 1999).

The NSW DEC (2006) and NEPC (1999) present health based investigation levels for different land uses (eg. industrial / commercial, residential, recreational etc.) as well as provisional phytotoxicity based investigation levels.

The proposed land use is residential, with potentially some open space areas. Therefore, the following investigation levels have been adopted as assessment criteria:

- Health-based investigation levels for residential land use with accessible soils (Column 1 of Appendix II in DEC 2006);
- Health-based investigation levels for open space and recreational land use (Column 3 of Appendix II in DEC 2006); and
- Provisional phytotoxicity-based investigation levels (Column 5 of Appendix II in DEC 2006).

The NSW DEC (2006) Guidelines do not provide investigation levels for volatile petroleum hydrocarbon compounds. The NSW EPA (1994) Guidelines for Assessing Service Station Sites provide an indication of acceptable threshold levels for cleanup of total petroleum hydrocarbons (TPH) compounds at service station sites to be reused for sensitive land uses. For semi-volatile petroleum hydrocarbons (C16 – C35 and >C35) investigation levels are provided in the NSW DEC (2006) guidelines, however, these are based on the NEPC 1999 health-based investigation levels, which require the laboratory analysis to unequivocally differentiate between aromatic and aliphatic compounds. Where the NSW EPA 1994 Guidelines are exceeded further comparison will be made to criteria presented in the CRC Care (2011) *Technical Report – Health Screening levels for Petroleum Hydrocarbons in Soil and Groundwater*.

The NSW DEC (2006) guidelines state that there are currently no national or NSW DEC endorsed guidelines relating to human health or environmental investigation of material containing asbestos on sites. Site Auditors must exercise their judgement when assessing if a site is suitable for a specific use in the light of evidence that asbestos may be a chemical of concern. Enhealth (2005) *Guidelines for Asbestos in the Non-Occupational Environment* provides some guidance on assessing and managing asbestos in soil although does not provide a threshold concentration or investigation level for asbestos. For this site, Coffey propose to adopt conservative criteria for asbestos (both fibrous and cemented fragments) of 'no detectable asbestos present in surface soils'.

The relevant soil investigation levels are summarised in Table LR1.

6 FIELD AND LABORATORY PROGRAMME

6.1 Sampling Plan

The field investigations for the site were developed in order to target the AECs identified in Coffey's Supplementary Contamination Assessment. The sampling locations were assessed by test pitting, collection of surface soil and sediment samples, and collection of fragments of potential ACM.

The general investigation areas are shown on Figure 2, and the sampling locations are shown on Figures 3A to 3E. The sampling locations were positioned at the locations as described below in Table 4.

TABLE 4 - SAMPLING PLAN

INVESTIGATION AREA	SAMPLING LOCATIONS
Fill / Mining Overburden Area	15 Test Pits (TP1 to TP15) in an approximate grid pattern across the investigation area
	17 Surface Soil Samples (SS1 to SS17) collected in an approximate grid pattern across the investigation area.
	The fill/mining overburden area is approximately 2.2 hectares. Based on the NSW EPA (1995) Sampling Design Guidelines a sufficient number of sampling points have been carried out to characterise the site.
Building Footprint 1	Surface Soil Samples SS18 to SS25 collected in an approximate grid pattern across the investigation area.
Building Footprint 2	Surface Soil Samples SS26 to SS29 collected in an approximate grid pattern across the investigation area.
Building Footprint 3	Surface Soil Samples SS30 and SS31 collected in an approximate grid pattern across the investigation area.
	Potential ACM fragment sample ASF1 collected from dumped rubbish in the investigation area.
Car Body	Surface Soil Sample CB1 collected adjacent to the car body in the investigation area.
Low Lying Area 1	Sediment Sample DS1 collected from low-lying area corresponding to a low lying area.
Low Lying Area 2	Sediment Sample DS2 collected from low-lying area corresponding to a low lying area.

6.2 Soil Sampling

Field work was undertaken on 15 and 16 April 2013 and 1 and 2 May 2013 by a Coffey Environmental Scientist. Fifteen test pits (TP1 to TP15) were excavated with a 20-tonne excavator, 32 surface soil samples (SS1 to SS31 and CB1) were collected, two sediment samples (DS1 and DS2) were collected and one potential ACM fragment sample (ASF1) was collected.

The 15 test pits were excavated to depths ranging from approximately 0.3m below ground surface (bgs) (in TP13) to approximately 4.0m bgs (in TP1). Surface soil and sediment samples were collected using hand tools (stainless steel shovels and trowels). The potential ACM fragment sample was collected directly by hand.

Environmental soil samples collected from the test pits were collected at the surface,, at approximately 0.5m bgs, at approximately 1.0m bgs and then at approximate 1m intervals until the test pits were terminated. The samples were collected from the centre of the excavator bucket in order to minimise the potential for cross-contamination. A clean pair of disposable gloves was used for each discrete sample.

The soil samples were divided into two subsamples. The first subsamples were placed into 250mL laboratory supplied glass jars for laboratory analysis. The second subsamples were placed into zip-lock plastic bags for asbestos analysis. Each sample was placed directly into an ice-chilled esky and remained chilled during transportation to the laboratory.

6.3 Laboratory Analysis

Selected soil samples were analysed for the respective COCs. The soil samples selected for analysis targeted layers/horizons associated with the likely mode of contaminant deposition and/or visual evidence of potential contamination. Samples were selected based on field evidence of potential contamination (if present).

Selected samples were also analysed for pH values in order to assess the potential for acid mine drainage issues at the site.

The samples were dispatched to the NATA-accredited Eurofins-MGT laboratory in Lane Cove West, NSW. The samples were dispatched to the laboratory under chain of custody conditions.

The samples were analysed for the following:

- Heavy Metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) 55 samples;
- pH 48 samples;
- Polycyclic Aromatic Hydrocarbons (PAH) 28 samples;
- Total Petroleum Hydrocarbons (TPH) 24 samples;
- Benzene, Toluene, Ethylbenzene and Total Xylenes; (BTEX) 24 samples;
- Asbestos 23 samples;
- Organochlorine Pesticides (OCP) six samples; and
- Polychlorinated Biphenyls (PCB) six samples.

7 QUALITY ASSURANCE / QUALITY CONTROL AND DATA USABILITY

Sampling activities were undertaken in accordance with Coffey's Standard Operating Procedures (SOPs), which are based on industry accepted practice. The assessment of field and laboratory quality assurance / quality control (QA / QC) procedures is included in a data validation report, which is attached in Appendix B.

In order to assess field QA / QC procedures, five duplicate samples (QC1, QC4, QC6, QC8 and QC9) and three triplicate samples (QC5, QC7 and QC10) were collected and dispatched with the primary samples. The duplicate samples were dispatched to the NATA-accredited Eurofins-MGT laboratory in Lane Cove West, NSW. The triplicate samples were dispatched to the NATA-accredited Envirolab laboratory in Chatswood, NSW. Additionally, one rinsate blank sample was collected and dispatched with the soil samples. Also, one trip blank sample was dispatched with the primary samples to the laboratory.

Samples were received by the laboratories within the recommended holding times except for some samples for pH analysis. Copies of the Chain of Custody documentation are included in Appendix D.

Table LR2 presents the relative percentage differences (RPDs) between the primary sample and the duplicate and triplicate samples analysed. Table LR3 presents the results of the laboratory analysis performed on the rinsate blanks, trip spike and trip blank. A review of the Coffey QA / QC results indicates that RPDs for a number of heavy metals exceeded the control limits of 50%. Concentrations of toluene and xylenes were recorded in both the rinsate and trip blank blank samples.

The RPD exceedences recorded are considered to be likely due to the heterogeneous nature of the fill material sampled. The concentrations of heavy metals in the duplicate and triplicate samples and associated primary samples were recorded below the adopted investigation levels. Therefore, Coffey considers the RPD results are unlikely to have had a significant impact on the laboratory results.

The concentrations of toluene and xylenes detected in the rinsate blank and trip blank samples are considered to be due to the quality of the water used in the blank and not a result of cross contamination. The concentrations of BTEX in the soil samples analysed were well below the adopted soil investigation levels and the detection of BTEX in the blank samples is unlikely to have had a significant impact on the laboratory results.

The laboratory internal QA/QC reports indicated that the appropriate laboratory QA / QC procedures and rates were undertaken for contamination studies, and that:

- Surrogate, matrix spike and laboratory control sample recoveries were within the acceptable range of 70 to 130%;
- Method blanks were free of contamination; and
- Some laboratory duplicate RPDs exceeded the acceptable ranges. Eurofins-MGT indicated that these exceedences passed their acceptance criteria as stipulated in their SOP-05.

Based on the assessment presented in Appendix B it is considered that the field and laboratory methods for soil are appropriate and that the data obtained is usable and considered to reasonably represent the concentrations at the sampling points at the time of sampling. As the holding times for pH analysis were exceeded for some samples, the pH results recorded during this assessment should be assessed as representative only.

8 RESULTS OF INVESTIGATION

8.1 Subsurface Conditions

Test pit logs and explanation sheets are included in Appendix C. The subsurface conditions encountered are summarised below in Tables 5 and 6.

TABLE 5 - SUMMARY OF SUBSURFACE SOIL TYPES - FILL / MINING OVERBURDEN AREA

SOIL TYPE	DESCRIPTION	APPROXIMATE DEPTH RANGE (m bgs)
FILL / TOPSOIL	Silty Sand and Sand, fine to medium grained, brown to dark brown, some fine to coarse grained gravel	0.0-0.15
FILL (MINE OVERBURDEN)	Sandy Gravel, fine to coarse grained, brown/grey, some yellow mottling some boulders and cobbles, some coal chitter Sandy Clay, low to medium plasticity, red/brown, medium to coarse grained gravel	0.15-3.2
EXTREMELY WEATHERED SANDSTONE	Sandy gravel, fine to coarse grained, red brown, some sand	3.2->4.0

TABLE 6 - SUMMARY OF SUBSURFACE SOIL TYPES - SURROUNDING AREAS

SOIL TYPE	DESCRIPTION	APPROXIMATE DEPTH RANGE (m bgs)
TOPSOIL	Silty Sand and Sand, fine to medium grained, brown to dark brown, some fine to coarse grained gravel	0.0-0.15
EXTREMELY WEATHERED SANDSTONE	Gravel, fine to coarse grained, red, some sand	0.15->2.0

Groundwater inflow was recorded in TP1 at approximately 2.5m depth. This was inferred to be perched groundwater located within the mine overburden and not representative of the regional groundwater beneath the site.

8.2 Laboratory Results

Soil analytical results are summarised in Table LR1. The laboratory analytical reports are included in Appendix D.

The laboratory results were compared to the investigation levels described in Section 5. The analytical results indicated that:

- Concentrations of BTEX, OCP, PCB and PAH were recorded below the adopted assessment criteria;
- Concentrations of cadmium exceeded the provisional phytotoxicity-based investigation levels in samples SS10 and SS22;
- Concentrations of nickel exceeded the provisional phytotoxicity-based investigation levels in sample TP4 0.4-0.5;
- Concentrations of zinc exceeded the provisional phytotoxicity-based investigation levels in samples SS12 and SS13;
- Concentrations of TPH (C10-C36) exceeded the adopted assessment criteria in sample SS30.
 Concentrations of TPH were recorded below the adopted assessment criteria in the other samples analysed;
- Asbestos was not detected in the samples analysed; and
- pH levels ranged from 3.4 to 7.3.

Due to the concentrations of TPH recorded in sample SS30, the laboratory result was compared to the Health Screening Levels (HSL's) for direct contact presented in the CRC Care (2011) *Technical Report – Health Screening levels for Petroleum Hydrocarbons in Soil and Groundwater.* The TPH concentrations recorded in sample SS30 were below the HSL's for low-density residential land use and recreational / open space land use.

9 DISCUSSION

9.1 Fill / Mining Overburden Area

Concentrations of heavy metals (cadmium, nickel and zinc) were recorded above provisional phytotoxicity-based investigation levels in three surface soil samples and in one test pit at approximately 0.5m depth. Concentrations of contaminants were not recorded above the adopted assessment criteria in the other samples analysed from this investigation area.

Given that the results are only slightly above the criteria Coffey considers that no additional investigations are required in this area at this stage. The fill/overburden areas appear to be small in nature and Coffey considers that these can be suitably managed.

9.2 Building Footprints

Hydrocarbon-impacted soils were encountered in one surface soil sample, though below relevant health screening levels for residential land use. One surface soil sample recorded cadmium concentrations slightly exceeding provisional phytotoxicity-based investigation levels.

Based on the results of this investigation, Coffey considers that no additional investigations are required in these areas at this stage.

9.3 Car Body and Low-Lying Areas

The likelihood of significant soil contamination to be present in these areas is considered to be low. Coffey considers that further soil contamination investigations are not required in these areas at this stage. The car bodies and surficial waste should be disposed to landfill and access to the site restricted to discourage illegal dumping.

9.4 Management of Mine Overburden

Mine overburden material from the former open-cut mining operations was encountered in an area located near the central south portion of the site.

The low soil pH (<4.0) plus the evidence of yellow straw coloured mineralisation (jarosite) within the weathered mine overburden are potential indicators of the oxidation of pyrite. Water passing through the overburden wastes may have produced acid rock drainage (ARD) in the past and if not managed appropriately will continue to be a potential source for ARD in the future.

Remediation and management of waste emplacement or stockpiles affected by ARD, typically involves methods that:

- minimise sulphide oxidation through limiting the oxygen supply, water infiltration and leaching; and/or
- maximise the amount and availability of acid neutralising agents.

Depending on the final use of this portion of the site the most practical approach to management should probably involve minimising oxygen supply and infiltration through the use of an appropriately designed cover layer.

9.4.1 Offsite Disposal of Soils

Soils that are proposed to be disposed offsite during construction works will need to be assessed by a suitably qualified environmental consultant in accordance with the NSW DECCW (2009) *Waste Classification Guidelines*. Given the low pH of the mine overburden material, it may not meet the definition of VENM or ENM as defined in the NSW EPA (2009) Waste Guidelines.

Should the overburden material be disposed off site, it may require neutralisation with lime, similar to the requirements for acid sulfate soils. Clarification should be sought with the NSW EPA prior to excavation and classification of the material.

10 CONCLUSION AND RECOMMENDATIONS

Coffey was commissioned by Winton to undertake a Phase 2 CA at the proposed land rezoning site at Bellbird Heights, NSW. The objectives of the CA were to assess the soil contamination status across the filled areas and footprints of former buildings, assess the dumped household waste at the site for the presence of Asbestos Containing Materials (ACM), and assess the contamination status of surface water or sediment in the low-lying areas at the site.

The laboratory results indicated low concentrations of chemicals of concern and no asbestos in soil was identified. Minor exceedences of the phototoxicity criteria for arsenic, cadmium, nickel and zinc were also recorded. Low soil pH (<4.0) was recorded in areas of mine overburden. The exceedences are not considered to represent a risk to the environment given the soil types, though the low pH may inhibit some plant species.

The existing mine overburden material will require management depending on the final lot layout and end use. This would likely include the incorporation of a capping layer, subsurface drainage layer and storm water diversion drains.

Based on the results of the investigations, the site is considered suitable, from a contamination point of view, for the proposed residential development.

11 LIMITATIONS

The findings within this report are the result of discrete/specific sampling practices used in accordance with normal practices and standards. To the best of our knowledge they represent a reasonable interpretation of the general conditions of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

It is the nature of contaminated site investigations that the degree of variability in site conditions cannot be known completely and no sampling and analysis program can eliminate all uncertainty concerning the condition of the site. Professional judgement must be exercised in the collection and interpretation of the data.

The investigations undertaken were limited by the nature of this assessment, and are considered to provide an assessment of the likely contamination conditions at the locations sampled.

In preparing this report, current guidelines for assessment and management of contaminated land were followed. This work has been conducted in good faith in accordance with Coffey Environments understanding of the client's brief and general accepted practice for environmental consulting.

This report was prepared for Winton Partners Bellbird Pty Ltd with the objectives of assessing the soil contamination status across the filled areas and footprints of former buildings, assessing the dumped household waste at the site for the presence of Asbestos Containing Materials (ACM), and assessing the contamination status of surface water or sediment in the low-lying areas at the site. No warranty, expressed or implied, is made as to the information and professional advice included in this report. Anyone using this document does so at their own risk and should satisfy themselves concerning its applicability and, where necessary, should seek expert advice in relation to the particular situation.

This report does not cover hazardous building materials issues. Information within the report including test pit logs should not be used for geotechnical investigation purposes.

REFERENCES

Central Mapping Authority (1979) Cessnock 1:25,000 Topographic Map, Sheet 9132-II-N.

Coffey Environments Australia (2013) Supplementary Contamination Assessment, Bellbird Heights, NSW, Reference ENAUWARA04363AA-L01 dated 15 March 2013.

Coffey Environments Australia (2013) Fee Proposal for Phase 2 Environmental Site Assessment, Bellbird Heights, NSW, Reference ENAUWARA04363AA-P02 dated 2 April 2013.

Coffey Geosciences (2001) Rezoning for Civic Centre and Retirement Village – Off Vincent St Cessnock, Environmental Assessment, Reference N7719/2-AC dated 14 June 2001.

Coffey Geosciences (2005) Rezoning for Residential Development – Bellbird Heights, off Vincent St Cessnock, Environmental Assessment, Reference N09693/01-AB dated 9 November 2005.

CRC Care (2011) Technical Report – Health Screening levels for Petroleum Hydrocarbons in Soil and Groundwater.

Department of Mineral Resources (1995) Newcastle 1:100,000 Coalfield Geological Map, Series 9231, Edition 1.

National Environmental Protection Council (1999) National Environmental Protection (Assessment of Site Contamination) Measure 1999, Schedule B (1) – Guideline on the Investigation Levels for Soil and Groundwater.

NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme. ISBN 0-7313 0177 3.

NSW DECCW (2009) Waste Classification Guidelines: Part 1 - Classifying Waste.

NSW EPA (1995) Sampling Design Guidelines. ISBN 0-7310-3756-1.

NSW OEH (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, OEH 2011/0650, ISBN 0 7310 3892 4, Office of Environment and Heritage, Sydney.

NSW EPA (1994) Guidelines for Assessing Service Station Sites. ISBN 0-7310-3712-X.

Important information about Coffey Environmental Report

Uncertainties as to what lies below the ground on potentially contaminated sites can lead to remediation costs blow outs, reduction in the value of the land and to delays in the redevelopment of land. These uncertainties are an inherent part of dealing with land contamination. The following notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

Your report has been written for a specific purpose

Your report has been developed on the basis of a specific purpose as understood by Coffey and applies only to the site or area investigated. For example, the purpose of your report may be:

- To assess the environmental effects of an ongoing operation.
- To provide due diligence on behalf of a property vendor
- To provide due diligence on behalf of a property purchaser.
- To provide information related to redevelopment of the site due to a proposed change in use, for example, industrial use to a residential use.
- To assess the existing baseline environmental, and sometimes geological and hydrological conditions or constraints of a site prior to an activity which may alter the sites environmental, geological or hydrological condition.

For each purpose, a specific approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible, quantify risks that both recognised and unrecognised contamination pose to the proposed activity. Such risks may be both financial (for example, clean up costs or limitations to the site use) and physical (for example, potential health risks to users of the site or the general public).

Scope of Investigations

The work was conducted, and the report has been prepared, in response to specific instructions from the client to whom this report is addressed, within practical time and budgetary constraints, and in reliance on certain data and information made available to Coffey. The analyses, evaluations, opinions and conclusions presented in this report are based on those instructions, requirements, data or information, and they could change if such instructions etc. are in fact inaccurate or incomplete.

Subsurface conditions can change Interpretation of factual data

Subsurface conditions are created by natural processes and the activity of man and may change with time. For example, groundwater levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of the subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project and/or on the property.

Interpretation of factual data

Environmental site assessments identify actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from indirect field measurements and sometimes other reports on the site are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how well qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, parties involved with management acquisition, redevelopment should retain the services of Coffey through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other problems encountered on site.

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered with redevelopment or on-going use of the site. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. In particular, a due diligence report for a property vendor may not be suitable for satisfying the needs of a purchaser. Your report should not be applied for any purpose other than that originally specified at the time the report was issued.

Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other professionals who are affected by the report. Have Coffey explain the report implications to professionals affected by them and then review plans and specifications produced to see how they have incorporated the report findings.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel), field testing and laboratory evaluation of field samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Contact Coffey for additional assistance

Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to land development and land use. It is common that not all approaches will be necessarily dealt with in your environmental site assessment report due to concepts proposed at that time. As a project progresses through planning and design toward construction and/or maintenance, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Responsibility

Environmental reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. do Responsibility clauses not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.

Tables

							Field_ID Sampled_Date-Time	DS1 15/04/2013	DS2 15/04/2013	SS1 16/04/2013	SS2 16/04/2013	SS3 16/04/2013		SS5 1/05/2013			SS8 1/05/2013		SS10 1/05/2013	SS11 1/05/2013	SS12 1/05/2013	SS13 1/05/2013	SS14 1/05/2013	SS15 3 1/05/2013	SS16 1/05/2013	SS17 3 1/05/2013
Method_Type	ChemName	Units	EQL	Residential with access	Service Station Guidelines	Open space and recreational	Phytotoxicity based investigation levels																			
Heavy Metal	Arsenic	mg/kg	2	100		200	20	5.3	4.2	7.7	3.9	3.1	<2	4.2	4.3	3.8	2.4	4.8		<2	6.7	7.7	3.4	2.8	2.4	
	Cadmium Chromium	mg/kg mg/kg	0.4 5	20		40	3	<0.4 15	0.7 18	<0.4 16	<0.4	0.8 18	<0.4	<0.4 9.3	<0.4 14	<0.4 24	<0.4 15	1 18	5.9 19	<0.4 16	0.5 16	1.8 47	0.5 13	<0.4 24	<0.4 22	<0.4
	Copper	mg/kg	5	1000		2000	100	6.3	16	18	23	16	12	7.3	17	<5	<5	19	34	12	64	13	24	<5	12	6.5
	Lead	mg/kg	5	300		600	300	16	50	24	14	25	16	22	<5	7	13	57	58	35	170	180	57	6	17	13
	Mercury Nickel	mg/kg	0.05 5	15 600		30 600	1 60	<0.05 7.8	<0.05	0.06 22	0.05	<0.05 21	<0.05	<0.05 33	<0.05	<0.05	< 0.05	<0.05 19	<0.05	<0.05 6.2	0.07 9.9	0.18 13	<0.05 11	<0.05 11	<0.05 19	<0.05 9.1
	Zinc	mg/kg mg/kg	5	7000		14000	200	27	18 140	35	25	54	11	60	19 27	13 21	5.1 7.3	160	14 150	95	580		120	24	32	35
Asbestos	Asbestos Fibres							-	-	Nondetect		Nondetect	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Inorganic	Moisture Content (dried @ 103℃		0.1					34	35	32	17	19	11	3.3	5	9.7	9.5	7.6	13	7.8	19	14	17	17	6.1	19
PCB	pH (aqueous extract) Aroclor 1016	pH_Units mg/kg	0.1					+ :-	-	-	-	-	4.4	3.7	3.6	5.2	5	5.7	6.9	5.8	6.1	6.6	6.5	6.2	6.2	6
ГОВ	Aroclor 1232	mg/kg	0.5					-		-	-		-	-	-			-			1		1	-	-	-
	Aroclor 1242	mg/kg	0.5					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-
	Aroclor 1248	mg/kg	0.5					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	'	<u> </u>	
	Aroclor 1254 Aroclor 1260	mg/kg	0.5					-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
	PCBs (Sum of total)	mg/kg mg/kg	0.5	10		20		-	-	-	-	-		-	-			-	-	-	-	-	+ -	-	- -	+-
Volatile	Benzene	mg/kg	0.1		1			<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	Toluene	mg/kg	0.1		1.4			<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	
1	Ethylbenzene Xylene (m & p)	mg/kg mg/kg	0.1		3.1			<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	-	-	-		-	-	-	-	-	-	+ -	-	-	-
	Xylene (o)	mg/kg	0.1					<0.2	<0.2	<0.1	<0.1	<0.1	-	-	-		-	-	-	-	-	-	-	-	-	-
	Xylene Total	mg/kg	0.3		14			<0.3	<0.3	<0.3	<0.3	<0.3	-	-	-	-	-	-	-	-	-	-	-		-	-
OCP	4,4-DDE	mg/kg	0.05					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 '	- -	-
	a-BHC Aldrin	mg/kg mg/kg	0.05						-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
	b-BHC	mg/kg	0.05					-		-	-		-	-	-			-			1		-	-	-	-
	cis-Chlordane	mg/kg	0.05					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	d-BHC	mg/kg	0.05					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	DDD DDT	mg/kg	0.05					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Dieldrin	mg/kg mg/kg	0.05					-		-	-		-	-	-			-			1		-	-	-	-
	Endosulfan I	mg/kg	0.05					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Endosulfan II	mg/kg	0.05					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Endosulfan sulphate Endrin	mg/kg mg/kg	0.05						-	+ -			-	-	-		-	-	-		1	-	-	+ -	-	-
	Endrin aldehyde	mg/kg	0.05					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Endrin ketone	mg/kg	0.05					-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	- '		
	g-BHC (Lindane) Heptachlor	mg/kg mg/kg	0.05	10		20		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Heptachlor epoxide	mg/kg	0.05	10		20		-		-	-		-	-	-			-			1		-	-	-	-
	Hexachlorobenzene	mg/kg	0.05					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Methoxychlor	mg/kg	0.2					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Organic	trans-chlordane F2-NAPHTHALENE	mg/kg mg/kg	0.05 50					<50	- <50	- <50	- <50	- <50	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Organic	C6 - C9	mg/kg	20		65			<20	<20	<20	<20	<20	-	-	-		-	-	-		-	-	-	-	-	
	Naphthalene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	
	C6-C10 less BTEX (F1)	mg/kg	20					<20	<20	<20	<20	<20	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	C10 - C16 C16 - C34	mg/kg mg/kg	50 100					<50 <100	<50 140	55 280	<50 210	<50 270	-	-	-	-	-	-	-	-	+ -	-	-	-	-	+
1	C34 - C40	mg/kg	100					<100	<100	<100	<100	<100	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	C6 - C10	mg/kg	20					<20	<20	<20	<20	<20		-	-	-	-	-	-	-	-	-	-		-	
PAH	Acenaphthene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5 <0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Acenaphthylene Anthracene	mg/kg mg/kg	0.5					<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	-	-	-	-	-	-	-		1 -		-	-	-	-
	Benzo(a)anthracene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-		-	<u> </u>
	Benzo(a)pyrene	mg/kg	0.5	1		2	1	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	 '	- -	
	Benzo(b)&(k)fluoranthene Benzo(g,h,i)perylene	mg/kg mg/kg	0.5					<1 <0.5	<1 <0.5	<1 <0.5	<1 <0.5	<1 <0.5	-	-	-		-	-	-	-	-	-	-	-	-	-
	Chrysene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Dibenz(a,h)anthracene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Fluoranthene	mg/kg	0.5					<0.5	<0.5	<0.5	0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg mg/kg	0.5					<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	+ -	-	-		-	-	-	-	-	-	-	-	-	-
	Phenanthrene	mg/kg	0.5					<0.5	<0.5	<0.5	0.7	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pyrene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total PAHs	mg/kg	1	20		40	20	<1	<1	<1	1.2	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TPH	Naphthalene C10 - C14	mg/kg mg/kg	0.5 20					<0.5 21	<0.5 21	<0.5 26	<0.5 24	<0.5 25	-	-	-		-	-	-	-	-	-	+ -	-	-	-
I	C15 - C28	mg/kg	50					<50	58	150	120	160	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	C29 - C36	mg/kg	50					<50	120	200	100	140	-	-	-	-	,	-	-	-	-	-	-	-	-	-
	C10 - C36 (Sum of total)	mg/kg	50		1000			<50	200	380	240	330	-	_	-	-	-	-	-	-		-	-	-	-	-

							Field ID	SS18	SS19	SS20	ISS21	SS22	SS23	SS24	SS25	SS26	SS27	SS28	SS29	SS30	SS31	TP1 0 0-0 1	TP2 0.0-0.1	TP2 0 0-1 0	TP3 00.0
							Sampled Date-Time			2/05/2013		2/05/2013										16/04/2013		16/04/2013	16/04/2013
							Sampleu_Date-Time	2/03/2013	2/03/2013	2/03/2013	2/03/2013	2/03/2013	2/03/2013	2/03/2013	2/03/2013	2/03/2013	2/03/2013	2/03/2013	2/03/2013	2/03/2013	2/03/2013	10/04/2013	10/04/2013	10/04/2013	10/04/2013
Method_Type	ChemName	Units	EQL	Residential with	Service Station	Open space and	Phytotoxicity based																		
				access	Guidelines	recreational	investigation levels																		
Heavy Metal	Arsenic	mg/kg	2	100		200	20	4.8	8.1	<2	8.9	58	3.5	3.8	3.1	5	6.3	2.9	2.3	2.1	3.9	13	4.8	4.9	3.9
	Cadmium	mg/kg	0.4	20		40	3	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.5
	Chromium Copper	mg/kg mg/kg	5 5	1000		2000	100	6.2 5.7	7.7	8.7 6.5	11 11	7.1 9.6	9.6 7.5	16 9.2	12 8.7	15 11	26 6.6	6.3 7.4	6.2 8.3	5.2 7	8.5 23	7.5 7.2	13 20	<5 13	10 16
	Lead	mg/kg	5	300		600	300	8.2	8.8	17	16	31	44	46	40	12	10	7.6	6.5	17	36	9.4	30	7.5	30
	Mercury	mg/kg	0.05	15		30	1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	<0.05	<0.05	0.08	<0.05	0.08	<0.05	<0.05	0.09	0.06
	Nickel	mg/kg	5	600		600	60	<5	22	9.2	10	<5	5.9	12	17	26	18	<5	7.6	8.9	19	8.3	37	<5	12
	Zinc	mg/kg	5	7000		14000	200	68	59	71	61	66	160	110	70	31	56	11	12	41	94	26	55	8.4	42
Asbestos	Asbestos Fibres							Nondetect	Nondetect	Nondetect	Nondetect	Nondetect	Nondetect	Nondetect	Nondetect	Nondetect	Nondetect	Nondetect	Nondetect	Nondetect	Nondetect	Nondetect	Nondetect	-	Nondete
Inorganic	Moisture Content (dried @ 103	- /	0.1					20	23	29	22	11	23	35	7.9	5.4	6.9	4.1	3.4	5	9.3	17	12	21	18
	pH (aqueous extract)	pH_Units	0.1						-	-	-		-	-	-	-	-	-	-	-	-	4.1	3.4	4.3	4.2
PCB	Aroclor 1016	mg/kg	0.5					<0.5	-	<0.5	-	<0.5	-	-	-	<0.5	-	-	-	<0.5	-	<0.5	-	-	-
	Aroclor 1232 Aroclor 1242	mg/kg	0.5					<0.5 <0.5	-	<0.5 <0.5	-	<0.5 <0.5	-	-	-	<0.5 <0.5	-	-	-	<0.5 <0.5	-	<0.5 <0.5	-	-	-
	Aroclor 1248	mg/kg mg/kg	0.5					<0.5	-	<0.5	-	<0.5	-	-	-	<0.5	-	-	-	<0.5	-	<0.5		-	-
	Aroclor 1246 Aroclor 1254	mg/kg	0.5					<0.5	-	<0.5	-	<0.5	-	-	-	<0.5	-	-	-	<0.5		<0.5	-	-	-
	Aroclor 1260	mg/kg	0.5					<0.5		<0.5	-	<0.5	-	-	-	<0.5	_	-	-	<0.5	_	<0.5	_	_	-
	PCBs (Sum of total)	mg/kg	0.5	10		20		<0.5	-	<0.5	-	<0.5	-	-	-	<0.5	-	-	-	<0.5	-	<0.5	-	-	-
Volatile	Benzene	mg/kg	0.1		1			<0.1	-	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Toluene	mg/kg	0.1		1.4			<0.1	-	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	<0.1	-	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1
	Ethylbenzene	mg/kg	0.1		3.1			<0.1	-	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Xylene (m & p)	mg/kg	0.2					<0.2	-	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Xylene (o)	mg/kg	0.1					<0.1	-	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Xylene Total	mg/kg	0.3		14			<0.3	-	<0.3	-	<0.3	<0.3	-	<0.3	<0.3	<0.3	-	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
OCP	4,4-DDE	mg/kg	0.05					<0.05	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-
	a-BHC	mg/kg	0.05					<0.05	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-
	Aldrin b-BHC	mg/kg mg/kg	0.05					<0.05	-	<0.05 <0.05	-	<0.05 <0.05	-	-	-	<0.05 <0.05	-	-	-	<0.05 <0.05	-	<0.05 <0.05	-	-	-
	cis-Chlordane	mg/kg	0.05					<0.05		<0.05	-	<0.05	-	-		<0.05	-			<0.05	-	<0.05	-	-	-
	d-BHC	mg/kg	0.05					<0.05		<0.05		<0.05	-	-	-	<0.05		-	-	<0.05		<0.05	-	-	
	DDD	mg/kg	0.05					<0.05	-	<0.05	-	<0.05	_	-	-	<0.05	-	_	-	<0.05	_	<0.05	_	-	+ -
	DDT	mg/kg	0.2					<0.2		<0.2	-	<0.2	-	-	-	<0.2	_	_	-	<0.2	_	<0.2	_	_	-
	Dieldrin	mg/kg	0.05					< 0.05	-	< 0.05	-	< 0.05	-	-	-	<0.05	-	-	-	<0.05	-	< 0.05	-	-	1 -
	Endosulfan I	mg/kg	0.05					< 0.05	-	< 0.05	-	< 0.05	-	-	-	< 0.05	-	-	-	< 0.05	-	< 0.05	-	-	-
	Endosulfan II	mg/kg	0.05					< 0.05	-	< 0.05	-	< 0.05	-	-	-	< 0.05	-	-	-	< 0.05	-	< 0.05	-	-	-
	Endosulfan sulphate	mg/kg	0.05					< 0.05		< 0.05	-	< 0.05	-	-	-	< 0.05	-	-	-	< 0.05	-	< 0.05	-	-	-
	Endrin	mg/kg	0.05					< 0.05	-	< 0.05	-	< 0.05	-	-	-	< 0.05	-			< 0.05	-	< 0.05	-	-	-
	Endrin aldehyde	mg/kg	0.05					<0.05	-	< 0.05	-	< 0.05	-	-	-	< 0.05	-	-	-	< 0.05	-	< 0.05	-	-	-
	Endrin ketone	mg/kg	0.05					<0.05	-	<0.05		<0.05	-	-	-	<0.05	-	-	-	< 0.05	-	<0.05	-	-	-
	g-BHC (Lindane)	mg/kg	0.05					<0.05	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-
	Heptachlor	mg/kg	0.05	10		20		<0.05	-	<0.05	-	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-
	Heptachlor epoxide	mg/kg	0.05					<0.05 <0.05	-	<0.05 <0.05	-	<0.05 <0.05	-	-	-	<0.05 <0.05	-	-	-	<0.05 <0.05	-	<0.05 <0.05	-	-	-
	Hexachlorobenzene Methoxychlor	mg/kg mg/kg	0.05					<0.05	-	<0.05	+ -	<0.05	-	-	-	<0.05	-	-	-	<0.05	-	<0.05	-	-	-
	trans-chlordane	mg/kg	0.05					<0.2		<0.2	+ :-	<0.2	-	-	-	<0.2	-	-	-	<0.2	- : -	<0.05			
Organic	F2-NAPHTHALENE	mg/kg	50					<50	-	<50	+ -	<50	<50	-	<50	69	83	-	<50	460	<50	<50	<50	<50	<50
Organio	C6 - C9	mg/kg	20		65			<20	-	<20	_	<20	<20	-	<20	<20	<20	-	<20	<20	<20	<20	<20	<20	<20
	Naphthalene	mg/kg	0.5					<0.5	-	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	C6-C10 less BTEX (F1)	mg/kg	20					<20	-	<20	-	<20	<20	-	<20	<20	<20		<20	<20	<20	<20	<20	<20	<20
	C10 - C16	mg/kg	50					<50	-	<50	-	<50	<50	-	<50	69	83	-	<50	460	<50	<50	<50	<50	<50
	C16 - C34	mg/kg	100					120	-	110	-	110	110	-	120	380	320	-	330	1900	<100	<100	<100	110	290
	C34 - C40	mg/kg	100					<100	-	<100	-	<100	<100	-	<100	<100	<100	-	<100	200	<100	<100	<100	<100	<100
DALL	C6 - C10	mg/kg	20					<20	- 0.5	<20	-	<20	<20	-	<20	<20	<20	-	<20	<20	<20	<20	<20	<20	<20
PAH	Acenaphthene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Acenaphthylene Anthracene	mg/kg mg/kg	0.5					<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
	Benzo(a)anthracene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5
	Benzo(a)pyrene	mg/kg	0.5	1		2	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	0.6	<0.5	<0.5
	Benzo(b)&(k)fluoranthene	mg/kg	1					<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	1.1	<1	<1
	Benzo(g,h,i)perylene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	0.7	<0.5	<0.5
	Chrysene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Dibenz(a,h)anthracene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Fluoranthene	mg/kg	0.5					<0.5	<0.5	<0.5			<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	1.2	<0.5	0.6
	Fluorene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5
	Phenanthrene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	1.1	0.5	<0.5	<0.5	<0.5	<0.5	1.4
	Pyrene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	1.1	<0.5	<0.5
	Total PAHs	mg/kg	1	20		40	20	<1	<1	<1	<1	<1	<1	<1	<1	1.6	<1	<1	1.1	4.6	<1	<1	5.7	<1	2
TDU	Naphthalene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
TPH	C10 - C14	mg/kg	20					<20	-	<20	-	<20	<20	-	<20 67	42	29 210		28 210	63 1200	<20	<20 <50	<20	<20 64	30 180
	C15 - C28 C29 - C36	mg/kg mg/kg	50 50					52 100	-	54 90	-	<50 110	<50 89	-	85	290 130	180	-	170	1200	<50 79	<50 <50	<50 100	56	160
	C10 - C36 (Sum of total)	mg/kg	50		1000			150		140	-	110	89	-	150	460	420	-	410	2400	79	<50 <50	100	120	370
		mg/ng			1000			100	-								720	_		2-100	10				010

							Field_ID Sampled_Date-Time	TP3_0.9-1.0 16/04/2013	TP4_0.0-0.1 16/04/2013		TP4_1.4-1.5 16/04/2013			TP6_0.4-0.5 1/05/2013	TP7_0.0-0.1 1/05/2013	TP7_0.4-0.5 1/05/2013	TP8_0.0-0.1 1/05/2013	TP9_0.0-0.1 1/05/2013	TP9_0.5-0.6 1/05/2013	TP10_0.0-0.1 1/05/2013	TP11_0.0-0.1 1/05/2013	TP12_0.0-0.1 1/05/2013
Method_Type	ChemName	Units	EQL	Residential with	Service Station	Open space and	Phytotoxicity based															
Heavy Metal	Arsenic	mg/kg	2	access 100	Guidelines	recreational 200	investigation levels 20	4.8	5.4	<2	3.8	4.9	3.9	6.8	4.9	5.1	<2	4.1	3	3.1	5.4	<2
riouvy mota.	Cadmium	mg/kg	0.4	20		40	3	<0.4	<0.4	<0.4	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.6	1.3
	Chromium Copper	mg/kg mg/kg	5 5	1000		2000	100	23 <5	9.1 12	31 56	56 <5	18 18	9.6 8.1	38 5.5	23 <5	11 15	7.1 8.7	22 20	21 <5	22 8.3	25 18	7.9 18
	Lead	mg/kg	5	300		600	300	5.7	6.8	6.7	6.5	15	19	12	7.2	7.7	10	11	5.4	13	77	35
	Mercury Nickel	mg/kg mg/kg	0.05 5	15 600		30 600	1 60	<0.05 7.6	0.05 7.9	<0.05 62	<0.05 28	<0.05 27	<0.05 10	<0.05 12	<0.05 23	<0.05 7.2	0.06 <5	0.05 12	<0.05 42	<0.05 16	<0.05 12	<0.05 7.4
	Zinc	mg/kg	5	7000		14000	200	7.3	15	39	21	35	16	23	21	18	18	25	24	39	160	98
Asbestos	Asbestos Fibres	0/	0.4					-	Nondetect	-	-	Nondetect	-	-	-	-	- 0.4	-	-	-	-	-
Inorganic	Moisture Content (dried @ 103℃) pH (aqueous extract)	pH Units	0.1					13 3.4	15 3.5	16 3.5	16 4	13 3.6	12 4.1	15 3.7	13 4	14 3.8	8.4 3.5	3.7	14 3.8	18 4.9	18 7.3	15 6.6
PCB	Aroclor 1016	mg/kg	0.5						-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Aroclor 1232 Aroclor 1242	mg/kg mg/kg	0.5					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Aroclor 1248	mg/kg	0.5					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Aroclor 1254 Aroclor 1260	mg/kg	0.5						-	-	-	-	-	-	-	-		-	-	-	-	-
	PCBs (Sum of total)	mg/kg mg/kg	0.5	10		20			-		-	-	-	-	-	-	-	-	-	-		-
Volatile	Benzene	mg/kg	0.1		1			<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-
	Toluene Ethylbenzene	mg/kg mg/kg	0.1		1.4 3.1			<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	-	-	-	-	-	-	-	-	-	-
	Xylene (m & p)	mg/kg	0.2					<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-	-	-	-	-	-	-	-
	Xylene (o) Xylene Total	mg/kg mg/kg	0.1		14			<0.1 <0.3	<0.1 <0.3	<0.1 <0.3	<0.1 <0.3	<0.1 <0.3	-	-	-	-	+ :	-	-	-	-	-
OCP	4,4-DDE	mg/kg	0.05					-	-	-	-	-	-	-	-	-	-	-	-	-	-	+ -
	a-BHC Aldrin	mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-	-	-
	b-BHC	mg/kg mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-		-
	cis-Chlordane	mg/kg	0.05					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	d-BHC DDD	mg/kg mg/kg	0.05					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	DDT	mg/kg	0.2					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Dieldrin Endosulfan I	mg/kg	0.05						-	-	-	-	-	-	-	-			-	-	-	
	Endosulfan II	mg/kg mg/kg	0.05						-	-	-	-	-	-	-	-	-	-	-	-		-
	Endosulfan sulphate	mg/kg	0.05					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Endrin Endrin aldehyde	mg/kg mg/kg	0.05					- :	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Endrin ketone	mg/kg	0.05					· .	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	g-BHC (Lindane) Heptachlor	mg/kg mg/kg	0.05	10		20		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Heptachlor epoxide	mg/kg	0.05			20		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Hexachlorobenzene Methoxychlor	mg/kg mg/kg	0.05					- :	-	-	-	-	-	-	-		-	-	-	-	-	-
	trans-chlordane	mg/kg	0.2						-		-	-	-	-	-	-	-	-	-	-		-
Organic	F2-NAPHTHALENE	mg/kg	50		05			<50	<50	<50	<50	<50	-	-	-	-	-	-	-	-	-	-
	C6 - C9 Naphthalene	mg/kg mg/kg	20 0.5		65			<20 <0.5	<20 <0.5	<20 <0.5	<20 <0.5	<20 <0.5	-	-	-	-	-	-	-	-	-	-
	C6-C10 less BTEX (F1)	mg/kg	20					<20	<20	<20	<20	<20	-	-	-	-	-	-	-	-	-	-
	C10 - C16 C16 - C34	mg/kg mg/kg	50 100					<50 <100	54 390	<50 <100	<50 <100	<50 <100	-	-	-	-	-	-	-	-	-	-
	C34 - C40	mg/kg	100					<100	<100	<100	<100	<100	-	-	-	-	-	-	-	-	-	-
PAH	C6 - C10 Acenaphthene	mg/kg mg/kg	20 0.5					<20 <0.5	<20 <0.5	<20 <0.5	<20 <0.5	<20 <0.5	-	-	-	-	-	-	-	-	-	-
FAII	Acenaphthylene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-			-	-	-	-
	Anthracene	mg/kg	0.5					<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-	-	-	-	-	-	-	-	-	-
	Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.5	1		2	1	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-		-
	Benzo(b)&(k)fluoranthene	mg/kg	1					<1	<1	<1	<1	<1	-	-	-	-	-	-	-	-	-	-
	Benzo(g,h,i)perylene Chrysene	mg/kg mg/kg	0.5					<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-	-	-	-	-	-	-	-	-	-
	Dibenz(a,h)anthracene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
	Fluoranthene Fluorene	mg/kg mg/kg	0.5					<0.5 <0.5	0.6 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-	-	-	-	-	-	-	-	-	-
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-			-			-
	Phenanthrene	mg/kg	0.5					<0.5	1.2	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
	Pyrene Total PAHs	mg/kg mg/kg	0.5	20		40	20	<0.5 <1	<0.5 1.8	<0.5 <1	<0.5 <1	<0.5 <1	-	-	-	-	-	-	-	-	-	-
	Naphthalene	mg/kg	0.5					<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-
TPH	C10 - C14 C15 - C28	mg/kg mg/kg	20 50					<20 <50	38 260	<20 <50	<20 <50	<20 57	-	-	-	-	-	-	-	-	-	-
	C29 - C36	mg/kg	50					<50	160	<50	<50	54	-	-	-	-	-	-	-	-	-	-
	C10 - C36 (Sum of total)	mg/kg	50		1000			<50	460	<50	<50	110	-	-	-	-	-	-	-	-	-	-

Field_ID	TP13_0.0-0.1	TP14_0.0-0.1	TP15_0.0-0.1	ASF1
Sampled_Date-Time	1/05/2013	1/05/2013	1/05/2013	2/05/2013

88 d - 1 T	Tour water or	In. sec	Leat	Book London M	0	0	Di con ter i con i				
Method_Type	ChemName	Units	EQL	Residential with access	Service Station Guidelines	Open space and recreational	Phytotoxicity based investigation levels				
Heavy Metal	Arsenic	mg/kg	2	100	Guidelines	200	20	2.7	<2	2.4	
i leavy ivietai	Cadmium	mg/kg	0.4	20		40	3	<0.4	<0.4	<0.4	-
	Chromium	mg/kg	5					15	13	16	-
	Copper	mg/kg	5	1000		2000	100	5	<5	<5	-
	Lead	mg/kg	5	300		600	300	15	7.6	9.1	-
	Mercury	mg/kg	0.05	15		30	1	<0.05	< 0.05	< 0.05	-
	Nickel	mg/kg	5	600		600	60	6.1	<5	10	-
	Zinc	mg/kg	5	7000		14000	200	60	7.6	14	-
Asbestos	Asbestos Fibres							-	-	-	Nondetect
Inorganic	Moisture Content (dried @ 103℃)	%	0.1					9.1	10	12	-
DOD	pH (aqueous extract)	pH_Units	0.1					5.7	5.5	5.9	-
PCB	Aroclor 1016 Aroclor 1232	mg/kg	0.5					-	-	-	-
	Aroclor 1232 Aroclor 1242	mg/kg	0.5					-			-
	Aroclor 1242 Aroclor 1248	mg/kg	0.5					-	-	-	-
	Aroclor 1246 Aroclor 1254	mg/kg mg/kg	0.5					-	-	-	-
	Aroclor 1260	mg/kg	0.5					-	-	-	-
	PCBs (Sum of total)	mg/kg	0.5	10		20			-		-
Volatile	Benzene	mg/kg	0.3	10	1	20		-	-	-	-
Volatile	Toluene	mg/kg	0.1		1.4			-	-	-	-
	Ethylbenzene	mg/kg	0.1		3.1			-	-	-	-
	Xylene (m & p)	mg/kg	0.2					_	-	-	-
	Xylene (o)	mg/kg	0.1					-	-	-	-
	Xylene Total	mg/kg	0.3		14			_	-	-	-
OCP	4,4-DDE	mg/kg	0.05					-	-	-	-
	a-BHC	mg/kg	0.05					-	-	-	-
	Aldrin	mg/kg	0.05					-	-	-	-
	b-BHC	mg/kg	0.05					-	-	-	-
	cis-Chlordane	mg/kg	0.05					-	-	-	-
	d-BHC	mg/kg	0.05					-	-	-	-
	DDD	mg/kg	0.05					-	-	-	-
	DDT	mg/kg	0.2					-	-	-	-
	Dieldrin	mg/kg	0.05					-	-	-	-
	Endosulfan I	mg/kg	0.05					-	-	-	-
	Endosulfan II	mg/kg	0.05					-	-	-	-
	Endosulfan sulphate	mg/kg	0.05					-	-	-	-
	Endrin	mg/kg	0.05					-	-	-	-
	Endrin aldehyde	mg/kg	0.05					-	-	-	-
	Endrin ketone	mg/kg	0.05					-	-	-	-
	g-BHC (Lindane)	mg/kg	0.05					-	-	-	-
	Heptachlor	mg/kg	0.05	10		20		-	-	-	-
	Heptachlor epoxide	mg/kg	0.05					-	-	-	-
	Hexachlorobenzene	mg/kg	0.05					-	-	-	-
	Methoxychlor	mg/kg	0.2					-	-	-	-
0	trans-chlordane	mg/kg	0.05					-	-	-	-
Organic	F2-NAPHTHALENE	mg/kg	50		GE .			-	-	-	-
	C6 - C9 Naphthalene	mg/kg mg/kg	20 0.5		65			-	-	-	-
	C6-C10 less BTEX (F1)	mg/kg	20					-	-	-	-
	C10 - C16	mg/kg	50					-	-	-	-
I	C16 - C34	mg/kg	100							-	-
I	C34 - C40	mg/kg	100					-	-	-	-
I	C6 - C10	mg/kg	20					-	-	-	-
PAH	Acenaphthene	mg/kg	0.5					_	-	-	-
I "'	Acenaphthylene	mg/kg	0.5					-	-	-	-
	Anthracene	mg/kg	0.5					-	-	-	-
	Benzo(a)anthracene	mg/kg	0.5					-	-	-	-
I	Benzo(a)pyrene	mg/kg	0.5	1		2	1	-	-	-	-
	Benzo(b)&(k)fluoranthene	mg/kg	1					-	-	-	-
I	Benzo(g,h,i)perylene	mg/kg	0.5					-	-	-	-
I	Chrysene	mg/kg	0.5					-	-	-	-
	Dibenz(a,h)anthracene	mg/kg	0.5					-	-	-	-
	Fluoranthene	mg/kg	0.5					-	-	-	-
ĺ	Fluorene	mg/kg	0.5					-	-	-	-
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5					-	-	-	-
	Phenanthrene	mg/kg	0.5					-	-	-	-
	Pyrene	mg/kg	0.5					-	-	-	-
ĺ	Total PAHs	mg/kg	1	20		40	20	-	-	-	-
	Naphthalene	mg/kg	0.5					-	-	-	-
TPH	C10 - C14	mg/kg	20					-	-	-	-
I	C15 - C28	mg/kg	50					-	-	-	-
	C29 - C36	mg/kg	50		44			-	-	-	-
•	C10 - C36 (Sum of total)	mg/kg	50		1000			-	-	-	-

Table LR2 **Duplicates and Triplicates** Bellbird Gateway Determination

			SDG	103127-103128	103127-103128		103130-103133	103130-103133		103130-103133	Interlab D	$\overline{}$
			Field ID	TP4 0.4-0.5	QC1	RPD	SS4	QC4	RPD	SS4	QC5	RPD
			Sampled_Date-Time	16/04/2013	16/04/2013	111.5	1/05/2013	1/05/2013	5	1/05/2013	1/05/2013	11.15
Method_Type	ChemName	Units	EQL					1				
Heavy Metal	Arsenic	mg/kg	2	<2.0	2.5	22	<2.0	5.5	93	<2.0	4.0	67
neavy ivietai	Cadmium	mg/kg	0.4	<0.4	<0.4	0	<0.4	<0.4	0	<0.4	<0.4	0
	Chromium	mg/kg	5	31.0	26.0	18	11.0	30.0	93	11.0	25.0	78
	Copper	mg/kg	5	56.0	44.0	24	12.0	19.0	45	12.0	22.0	59
			5	6.7	10.0	40	16.0	27.0	51	16.0	28.0	55
	Lead	mg/kg		<0.05	<0.05	0	<0.05	<0.05		<0.05	<0.1	0
	Mercury	mg/kg	0.05	62.0	44.0			23.0	0		23.0	71
	Nickel	mg/kg	5			34	11.0		71	11.0		
	Zinc	mg/kg	5	39.0	66.0	51	18.0	34.0	62	18.0	31.0	53
Organic	F2-NAPHTHALENE	mg/kg	50	<50.0	<50.0	0						_
Organic	C6 - C9	mg/kg	20	<20.0	<20.0	0						+
	Naphthalene	mg/kg	0.5	<0.5	<0.5	0						+
	C6-C10 less BTEX (F1)	mg/kg	20	<20.0	<20.0	0				+		+
	C10 - C16	mg/kg	50	<50.0	<50.0	0				+		+
	C16 - C34	mg/kg	100	<100.0	<100.0	0						+
	C34 - C40	mg/kg	100	<100.0	<100.0	0				+		+
	C6 - C10	mg/kg	20	<20.0	<20.0	0						+
	60-610	ilig/kg	20	₹20.0	\20.0	0						+
PAH	Acenaphthene	mg/kg	0.5	<0.5	<0.5	0						+
	Acenaphthylene	mg/kg	0.5	<0.5	<0.5	0						1
	Anthracene	mg/kg	0.5	<0.5	<0.5	0						1 7
	Benzo(a)anthracene	mg/kg	0.5	<0.5	<0.5	0						+
	Benzo(a)pyrene	mg/kg	0.5	<0.5	<0.5	0						1
	Benzo(b)&(k)fluoranthene	mg/kg	1	<1.0	<1.0	0						1 7
	Benzo(g,h,i)perylene	mg/kg	0.5	<0.5	<0.5	0						1
	Chrysene	mg/kg	0.5	<0.5	<0.5	0						1
	Dibenz(a,h)anthracene	mg/kg	0.5	<0.5	<0.5	0						+
	Fluoranthene	mg/kg	0.5	<0.5	<0.5	0						+
	Fluorene	mg/kg	0.5	<0.5	<0.5	0						+
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	<0.5	<0.5	0						+
	Phenanthrene	mg/kg	0.5	<0.5	<0.5	0				+		+
	Pyrene	mg/kg	0.5	<0.5	<0.5	0				+		+
	Total PAHs	mg/kg	1	<1.0	<1.0	0						+
	Naphthalene	mg/kg	0.5	<0.5	<0.5	0				+		+
	Naphinaiche	mg/kg	0.0	VO.0	V0.0	0						+
TPH	C10 - C14	mg/kg	20	<20.0	<20.0	0				1		+
	C15 - C28	mg/kg	50	<50.0	<50.0	0		 		1		+
	C29 - C36	mg/kg	50	<50.0	<50.0	0		 		1		+
	C10 - C36 (Sum of total)	mg/kg	50	<50.0	<50.0	0				+		+
	5.5 Coo (Cam or total)	mg/ng		30.0	300.0	<u> </u>	1	 		1		+ -
Volatile	Benzene	mg/kg	0.1	<0.1	<0.1	0	1	†				+
	Toluene	mg/kg	0.1	<0.1	<0.1	0	1	†		1		† †
	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	0				1		+
	Xylene (m & p)	mg/kg	0.2	<0.2	<0.2	0		 		1		+ -
	Xylene (o)	mg/kg	0.1	<0.1	<0.1	0				1		+
	Xylene Total	mg/kg	0.3	<0.3	<0.3	0		 		1		+
	7.5.5110 10101	mgmg	10.0	_			ration is greater than	5 5 16 . 501		I		

^{*}RPDs have only been considered where a concentration is greater than 5 times the EQL.

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 40 (5-20 x EQL); 20 (20-30 x EQL); 50 (> 30 x EQL))

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Table LR2 **Duplicates and Triplicates** Bellbird Gateway Determination

103130-103133 Interlab_D

103130-103133 | 103130-103133

103130-103133 103130-103133

SDG

			Field_ID	TP11 0.0-0.1	QC6	RPD	TP11 0.0-0.1		RPD	SS9	QC8	RPD
			Sampled_Date-Time	1/05/2013	1/05/2013	2	1/05/2013			1/05/2013	1/05/2013	2
			•		<u> </u>					•		
Method_Type	ChemName	Units	EQL									
Heavy Metal	Arsenic	mg/kg	2	5.4	6.9	24	5.4	<4.0	30	4.8	2.5	63
	Cadmium	mg/kg	0.4	0.6	1.5	86	0.6	0.5	18	1.0	1.4	33
	Chromium	mg/kg	5	25.0	37.0	39	25.0	39.0	44	18.0	27.0	40
	Copper	mg/kg	5	18.0	32.0	56	18.0	17.0	6	19.0	21.0	10
	Lead	mg/kg	5	77.0	93.0	19	77.0	47.0	48	57.0	86.0	41
	Mercury	mg/kg	0.05	< 0.05	< 0.05	0	< 0.05	<0.1	0	< 0.05	< 0.05	0
	Nickel	mg/kg	5	12.0	18.0	40	12.0	13.0	8	19.0	20.0	5
	Zinc	mg/kg	5	160.0	800.0	133	160.0	260.0	48	160.0	230.0	36
Organic	F2-NAPHTHALENE	mg/kg	50									
	C6 - C9	mg/kg	20									
	Naphthalene	mg/kg	0.5									
	C6-C10 less BTEX (F1)	mg/kg	20									
	C10 - C16	mg/kg	50									
	C16 - C34	mg/kg	100									
	C34 - C40	mg/kg	100									
	C6 - C10	mg/kg	20									
DALL	A		0.5									
PAH	Acenaphthene	mg/kg	0.5									
	Acenaphthylene	mg/kg	0.5									
	Anthracene	mg/kg	0.5	<u> </u>								
	Benzo(a)anthracene	mg/kg	0.5									
	Benzo(a)pyrene	mg/kg	0.5	<u> </u>								
	Benzo(b)&(k)fluoranthene	mg/kg	1	<u> </u>								
	Benzo(g,h,i)perylene	mg/kg	0.5	<u> </u>								
	Chrysene	mg/kg	0.5									
	Dibenz(a,h)anthracene	mg/kg	0.5	<u> </u>								
	Fluoranthene	mg/kg	0.5	<u> </u>								
	Fluorene	mg/kg	0.5									
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5									
	Phenanthrene	mg/kg	0.5									
	Pyrene	mg/kg	0.5									
	Total PAHs	mg/kg	1									
	Naphthalene	mg/kg	0.5						1			
TPH	C10 - C14	mg/kg	20	+			1				 	
	C15 - C28	mg/kg	50									
	C29 - C36	mg/kg	50									
	C10 - C36 (Sum of total)	mg/kg	50									
	CTO GGG (Garrier total)	mg/ng	00									
Volatile	Benzene	mg/kg	0.1									
	Toluene	mg/kg	0.1									
	Ethylbenzene	mg/kg	0.1	1							1	
	Xylene (m & p)	mg/kg	0.2	1							1	
	Xylene (o)	mg/kg	0.1									
	Xylene Total	mg/kg	0.3	1			İ			İ	İ	

^{*}RPDs have only been considered where a concentration is greater than 5 times the EQL.

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 40 (5-20 x EQL); 20 (20-30 x EQL); 50 (> 30 x EQL))

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

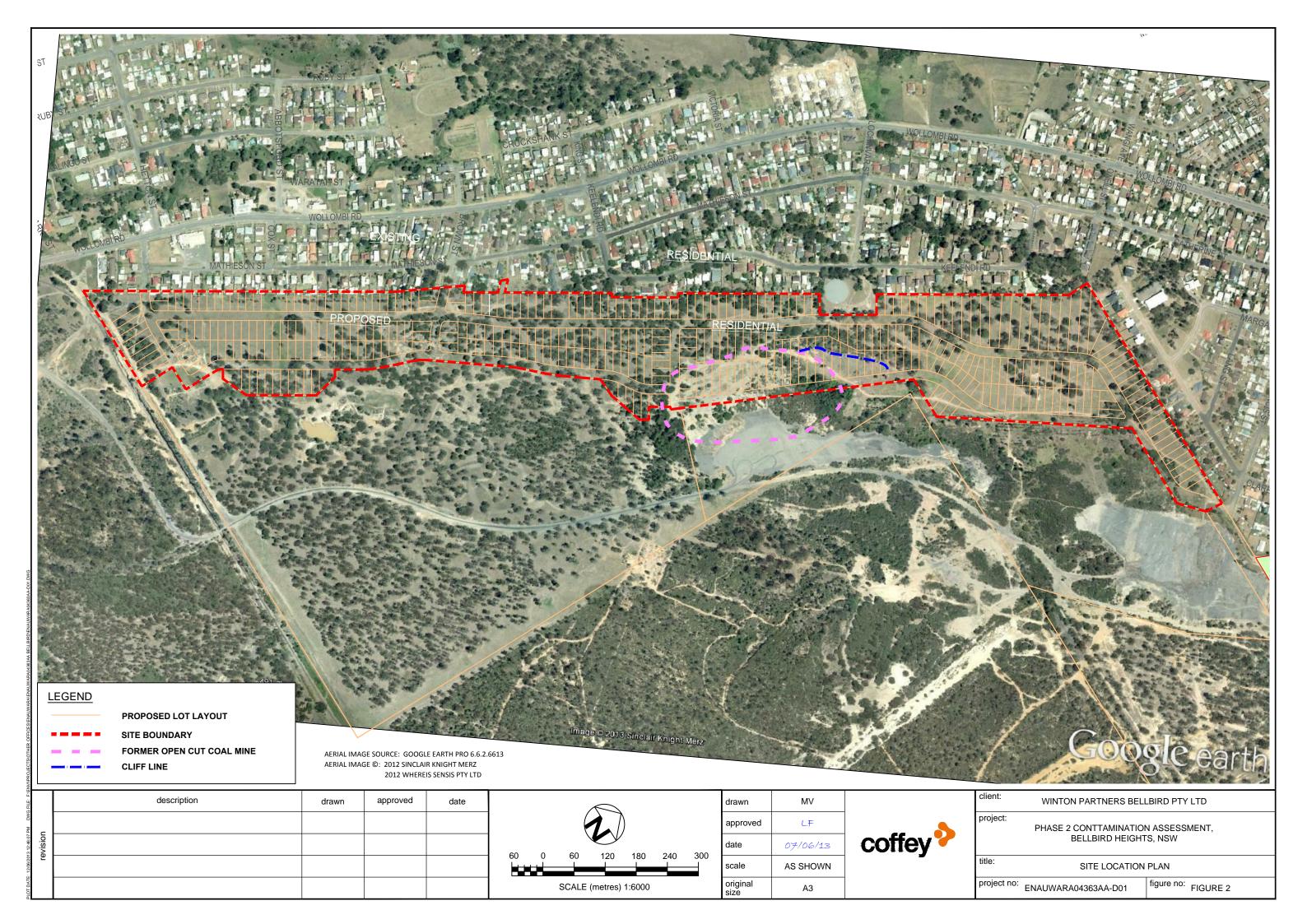
Table LR2 **Duplicates and Triplicates** Bellbird Gateway Determination

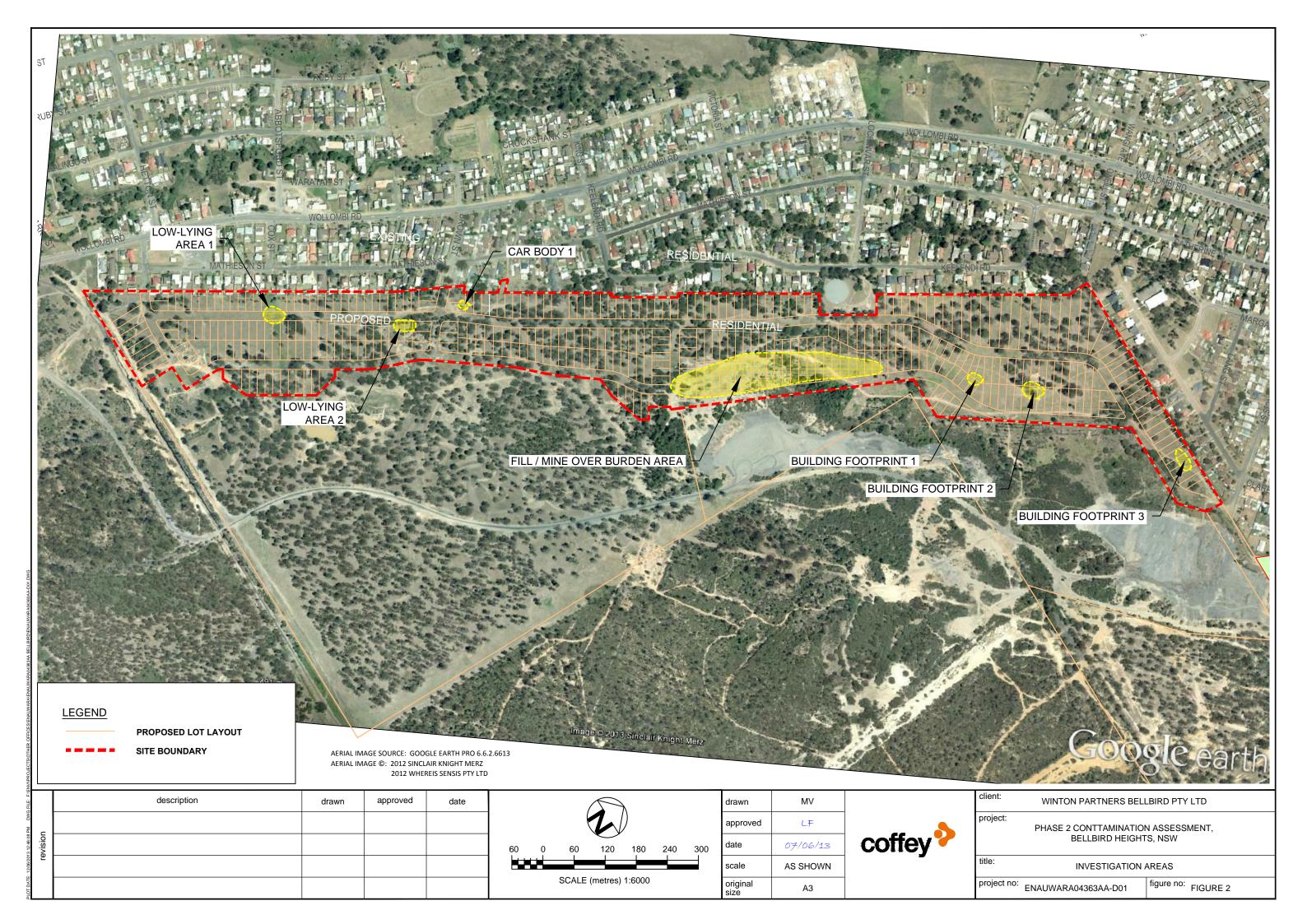
SDG	103130-103133	103130-103133		103130-103133	Interlab_D	
Field_ID	TP14_0.0-0.1	QC9	RPD	TP14_0.0-0.1	QC10	RPD
Sampled_Date-Time	1/05/2013	1/05/2013		1/05/2013	1/05/2013	

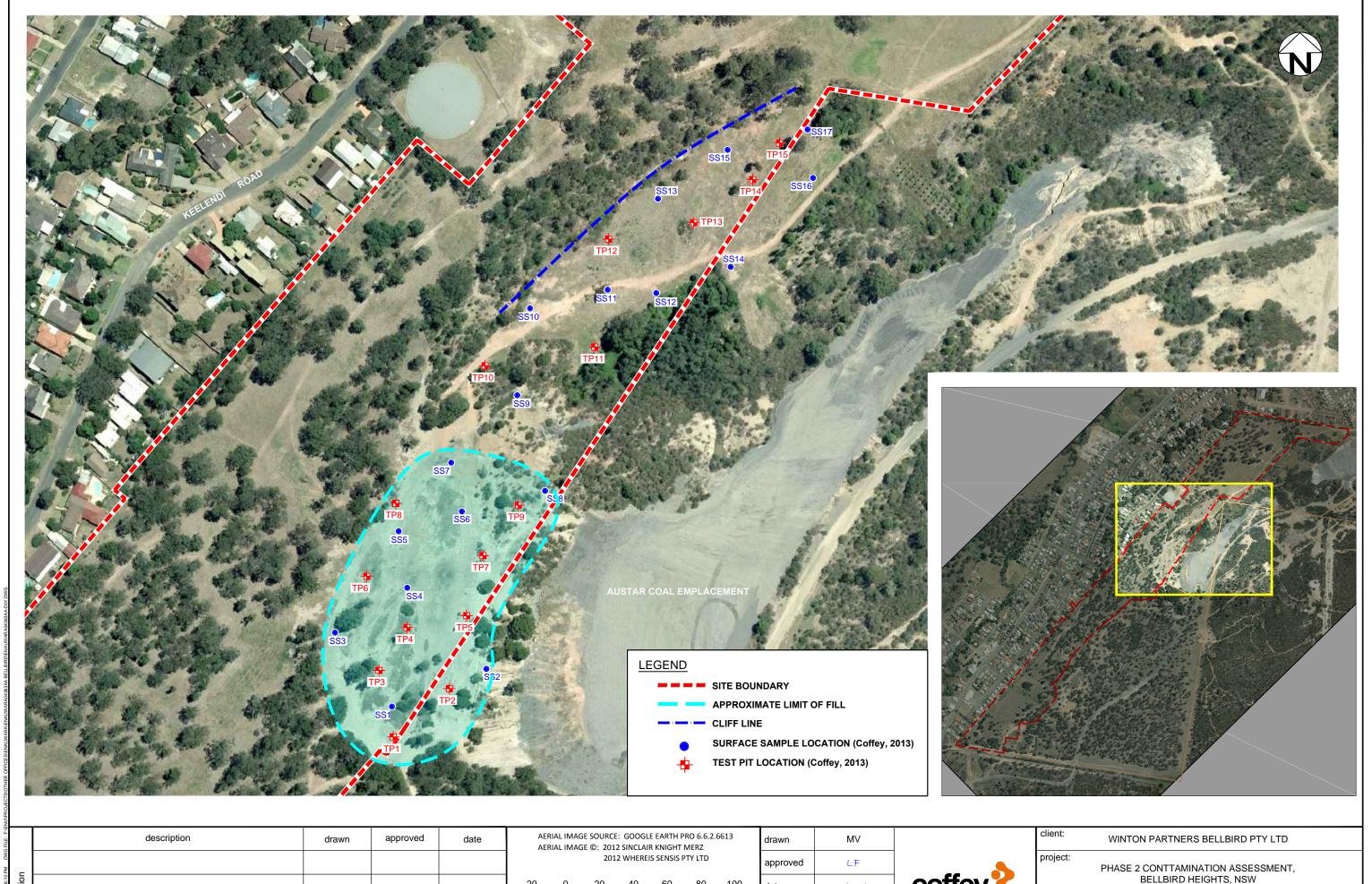
Method_Type	ChemName	Units	EQL						
Heavy Metal	Arsenic	mg/kg	2	<2.0	<2.0	0	<2.0	<4.0	0
	Cadmium	mg/kg	0.4	<0.4	<0.4	0	<0.4	<0.4	0
	Chromium	mg/kg	5	13.0	11.0	17	13.0	18.0	32
	Copper	mg/kg	5	<5.0	<5.0	0	<5.0	<1.0	0
	Lead	mg/kg	5	7.6	5.6	30	7.6	6.0	24
	Mercury	mg/kg	0.05	< 0.05	<0.05	0	< 0.05	<0.1	0
	Nickel	mg/kg	5	<5.0	6.9	32	<5.0	6.0	18
	Zinc	mg/kg	5	7.6	11.0	37	7.6	5.0	41
		3 3					-		
Organic	F2-NAPHTHALENE	mg/kg	50						
· ·	C6 - C9	mg/kg	20						
	Naphthalene	mg/kg	0.5						1
	C6-C10 less BTEX (F1)	mg/kg	20						
	C10 - C16	mg/kg	50						
	C16 - C34	mg/kg	100						
	C34 - C40	mg/kg	100						
	C6 - C10	mg/kg	20						İ
	00 0.0	g,g							
PAH	Acenaphthene	mg/kg	0.5						
	Acenaphthylene	mg/kg	0.5						1
	Anthracene	mg/kg	0.5						
	Benzo(a)anthracene	mg/kg	0.5						t
	Benzo(a)pyrene	mg/kg	0.5						
	Benzo(b)&(k)fluoranthene	mg/kg	1						
	Benzo(g,h,i)perylene	mg/kg	0.5						
	Chrysene	mg/kg	0.5						
	Dibenz(a,h)anthracene	mg/kg	0.5						t
	Fluoranthene	mg/kg	0.5						
	Fluorene	mg/kg	0.5						1
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5						
	Phenanthrene	mg/kg	0.5						+
	Pyrene	mg/kg	0.5						
	Total PAHs	mg/kg	1						
	Naphthalene	mg/kg	0.5						
	raphinalone	mg/ng	0.0						
TPH	C10 - C14	mg/kg	20						
	C15 - C28	mg/kg	50						
	C29 - C36	mg/kg	50						
	C10 - C36 (Sum of total)	mg/kg	50						
	2.5 Coo (Cam or total)	mg/ng	1	+					
Volatile	Benzene	mg/kg	0.1						1
	Toluene	mg/kg	0.1						
	Ethylbenzene	mg/kg	0.1						
	Xylene (m & p)	mg/kg	0.2						
	Xylene (o)	mg/kg	0.1						<u> </u>
	Xylene Total	mg/kg	0.3						
	Aylono Total	myrky	0.0	+000	been considered v	<u> </u>			

^{*}RPDs have only been considered where a concentration is greater than 5 times the EQL.

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 40 (5-20 x EQL); 20 (20-30 x EQL); 50 (> 30 x EQL))


***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

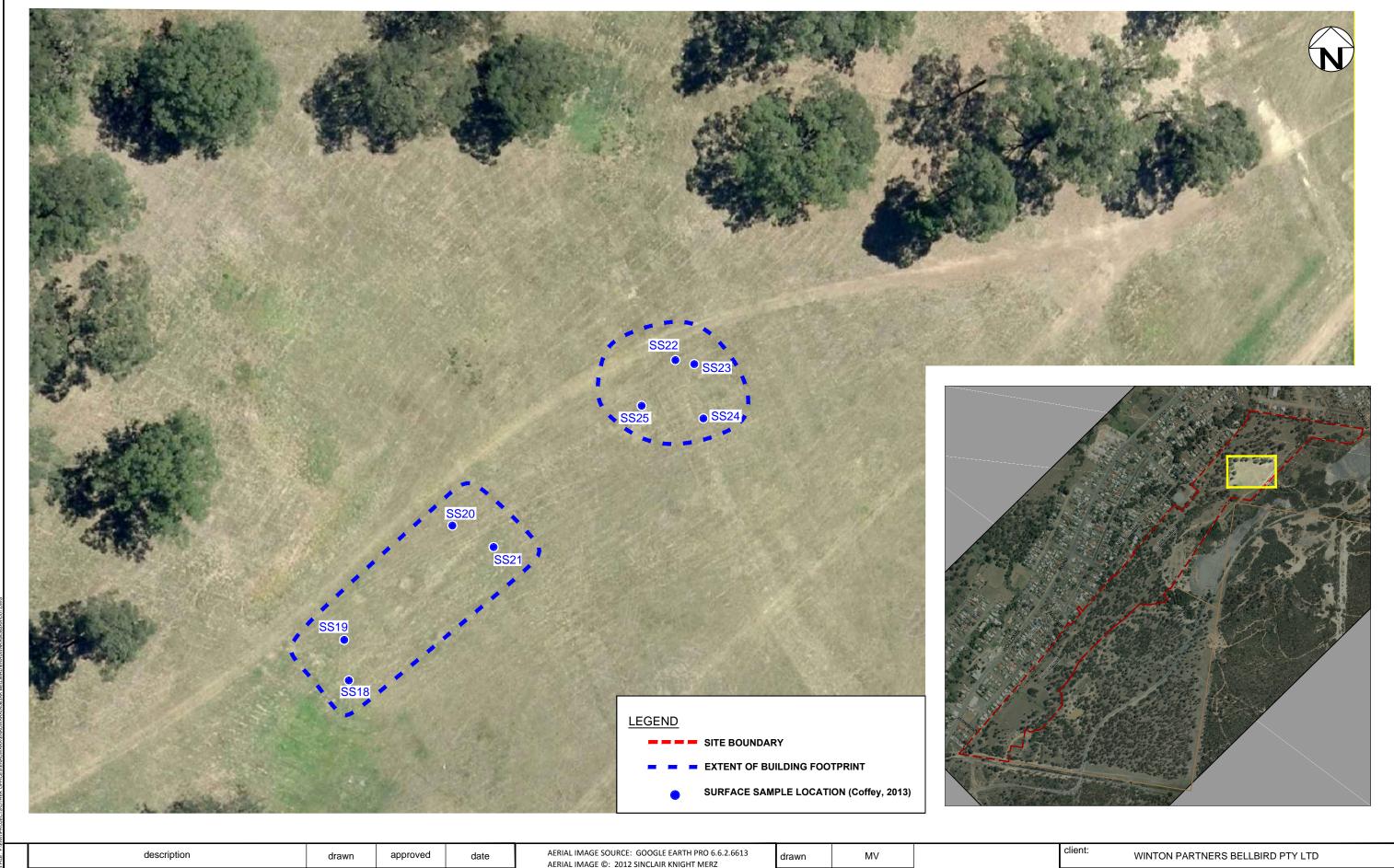

Table LR3 Rinsates and Trip Blanks Bellbird Gateway Determination


SDG	103130-103133	103130-103133
Field_ID	QC3	QC2
Sampled_Date-Time	1/05/2013	1/05/2013
Sample_Type	Rinsate	Trip_B

Method_Type	ChemName	Units	EQL		
Heavy Metal	Arsenic (Filtered)	mg/l	0.001	<0.001	
	Cadmium (Filtered)	mg/l	0.0001	<0.0001	
	Chromium (Filtered)	mg/l	0.001	<0.001	
	Copper (Filtered)	mg/l	0.001	<0.001	
	Lead (Filtered)	mg/l	0.001	<0.001	
	Mercury (Filtered)	mg/l	0.0001	<0.0001	
	Nickel (Filtered)	mg/l	0.001	<0.001	
	Zinc (Filtered)	mg/l	0.005	<0.005	
Organic	F2-NAPHTHALENE	mg/l	0.05	<0.05	
	C6 - C9	μg/l	20	<20	<20
	Naphthalene	μg/l	20	<20	
	C6-C10 less BTEX (F1)	mg/l	0.02	<0.02	
	C10 - C16	mg/l	0.05	< 0.05	
	C16 - C34	mg/l	0.1	<0.1	
	C34 - C40	mg/l	0.1	<0.1	
	C6 - C10	mg/l	0.02	<0.02	
TPH	C10 - C14	μg/l	50	<50	
	C15 - C28	μg/l	100	<100	
	C29 - C36	μg/l	100	<100	
	C10 - C36 (Sum of total)	μg/l	100	<100	
VOC	Benzene	μg/l	1		
	Toluene	μg/l	1		
	Ethylbenzene	μg/l	1		
	Xylene (m & p)	μg/l	2		
	Xylene (o)	μg/l	1		
	Xylene Total	μg/l	3		
Volatile	Benzene	μg/l	1	<1	<1
	Toluene	μg/l	1	2	2
	Ethylbenzene	μg/l	1	<1	<1
	Xylene (m & p)	μg/l	2	4	2
	Xylene (o)	μg/l	1	<1	<1
	Xylene Total	μg/l	3	4	<3
	Naphthalene	μg/l	20		

Figures

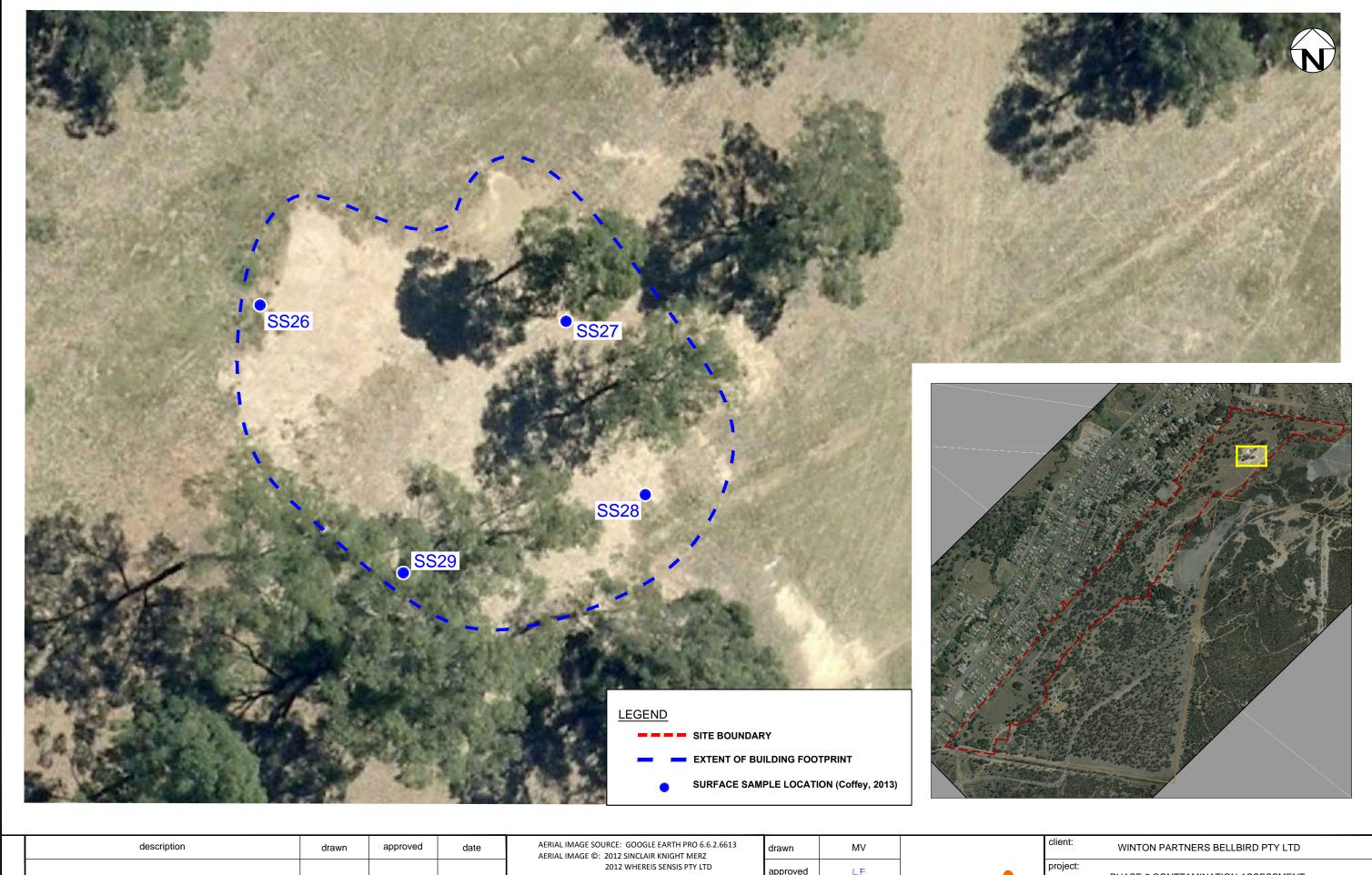
2012 WHEREIS SENSIS PTY LTD


0 0 20 40 60 80 100

SCALE (metres) 1:2000

drawn	MV
approved	LF
date	07/06/13
scale	AS SHOWN
original size	А3

00	WINTON PARTNERS BELLBIRD PTY LTD			
project:	PHASE 2 CONTTAMINATION BELLBIRD HEIGHT	· · · · · · · · · · · · · · · · · · ·		
title: FII	title: FILL / MINE OVERBURDEN AREA - SAMPLE LOCATIONS			
project no:	ENAUWARA04363AA-D01	figure no: FIGURE 3A		


	4000.1911011	diawii	арр.отоа	date
_				
revision				
š.				
2				

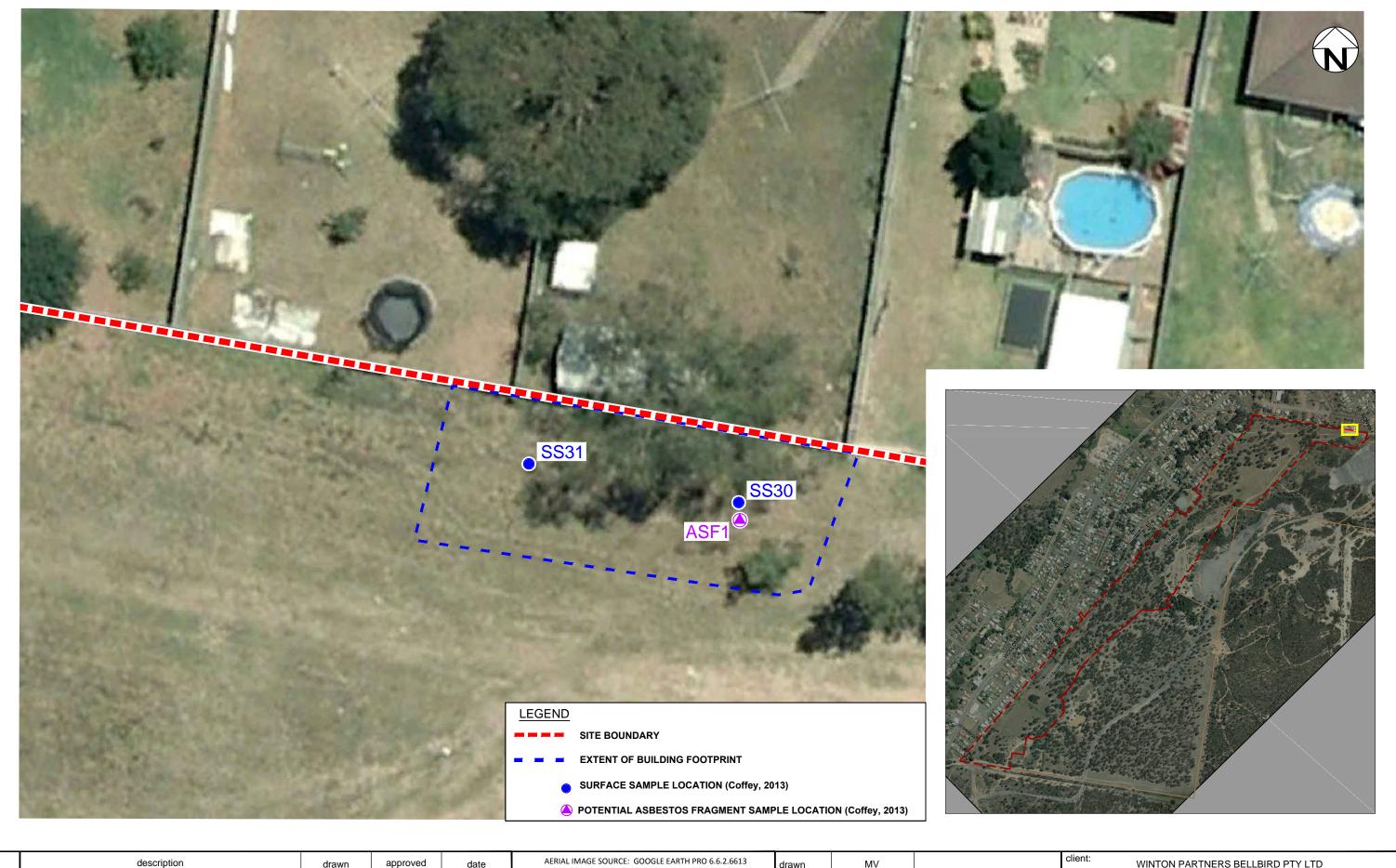
AE	RIAL IMAG	SE ©: 201 201			HT MERZ	
5	0	5		15		25
SCALE (metres) 1:500						

drawn	MV
approved	LF
date	07/06/13
scale	AS SHOWN
original size	А3

coffey

client:	WINTON PARTNERS BELLBIRD PTY LTD		
project:	PHASE 2 CONTTAMINATIOI BELLBIRD HEIGHT	*	
title:	BUILDING FOOTPRINT 1 - SAMPLE LOCATIONS		
project no:	ENAUWARA04363AA-D01 figure no: FIGURE 3B		

	description	urawii	арргочец	uale
on				
revision				
re				
İ				

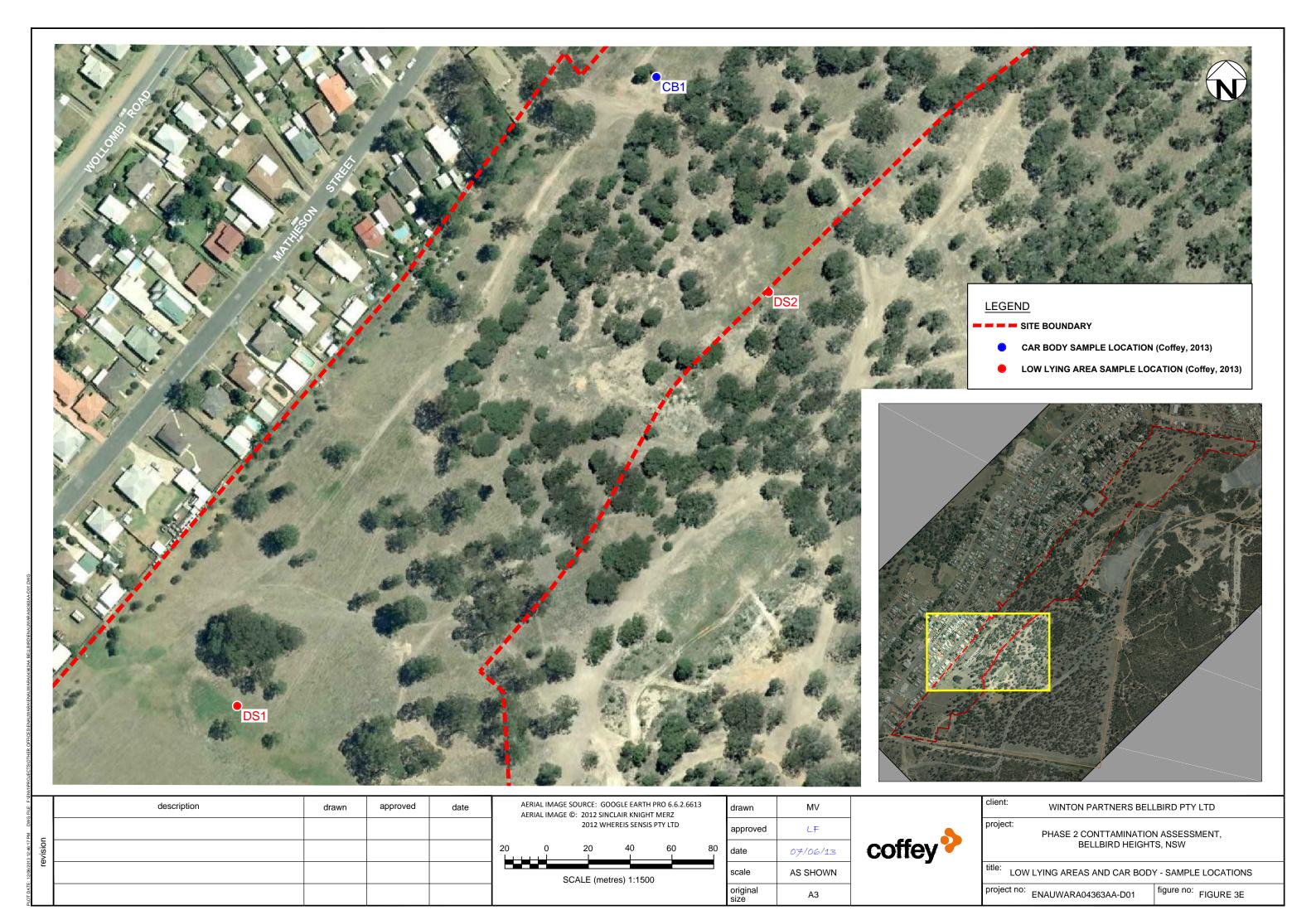

2012 WHEREIS SENSIS PTY LTD

2.5 0 5 10

SCALE (metres) 1:250

arawn	IVIV
approved	LF
date	07/06/13
scale	AS SHOWN
original size	А3

client:	WINTON PARTNERS BELLBIRD PTY LTD		
project:	PHASE 2 CONTTAMINATION ASSESSMENT, BELLBIRD HEIGHTS, NSW		
title:	BUILDING FOOTPRINT 2 - SAMPLE LOCATIONS		
project no:	ENAUWARA04363AA-D01	figure no: FIGURE 3C	



	description	drawn	approved	date	
_					
revision] :
re					

8	drawn	MV
	approved	LF
	date	07/06/13
	scale	AS SHOWN
	original size	A3

client:	WINTON PARTNERS BELLBIRD PTY LTD			
project:	PHASE 2 CONTTAMINATION ASSESSMENT, BELLBIRD HEIGHTS, NSW			
title:	BUILDING FOOTPRINT 3 - SAMPLE LOCATIONS			
project no:	ENAUWARA04363AA-D01	figure no: FIGURE 3D		

Appendix A Site Photographs

Photograph 1: Yellow/straw coloured staining indicative of jarosite (oxidation of pyrite).

Photograph 2: Excavating test pit TP2 in mining overburden area

drawn	DCH		client:	WINTON PARTNE	ERS BELLBIRD
approved		coffey	project:	PHASE 2 CONTAMINA	TION ASSESSMNET
date	15/05/2013	environments		BELLBIRD HEI	GHTS, NSW
scale	NTS	SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE	title:	SITE PHOTO)GRAPHS
original size	A4		project no:	ENAUWARA04363AA	

Photograph 3: Evidence of lime being spread over the placement area on adjoining land

Photograph 4: Little visual evidence of sulphide oxidation within the exposed rocks

drawn	DCH		client:	WINTON PARTNE	ERS BELLBIRD
approved		coffey	project:	PHASE 2 CONTAMINA	TION ASSESSMNET
date	18/01/2013	environments		BELLBIRD HEI	GHTS, NSW
scale	NTS	SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE	title:	SITE PHOTO	OGRAPHS
original size	A4		project no:	ENAUWARA04363AA	

Appendix B Data Validation Report

DATA COMPLETENESS

Field Considerations

	Yes / No	Comment
Were all critical locations sampled?	Yes	
Were all critical depths sampled?	Yes	
Were the SOPs appropriate and complied with?	Yes	
Was the sampler adequately experienced?	Yes	
Was the field documentation complete?	Yes	
Is a copy of the signed chain of custody form for each batch of samples included?	Yes	

Laboratory Considerations

	Yes / No	Comment
Were all critical samples analysed according to sampling plan?	Yes	
Were analytes analysed as per sampling plan?	Yes	
Were the laboratory methods appropriate?	Yes	
Were the laboratory methods adopted NATA endorsed?	Yes	
Was the NATA Seal on the laboratory reports?	Yes	
Were the laboratory reports signed by an authorised person?	Yes	
Were the laboratory PQLs below the criteria?	Yes	

Was sample documentation complete?	Yes	
Were sample holding times complied with?	No	Some holding times for pH were exceeded

COMPLETENESS CONCLUSION

	Yes / No	Comment
Was data adequately complete?	Yes	

DATA COMPARABILITY

Field considerations

	Yes / No	Comment
Was there more than one sampling round?	Yes	Two soil sampling rounds were undertaken. Both rounds were undertaken by the same sampler
Were the same sampling methodology and SOPs used for all sampling?	Yes	
Was all sampling undertaken by the same sampler?	Yes	
Were sample containers, preservation, filtering the same?	Yes	
Could climatic conditions (temperature, rainfall, wind) have influenced data comparability?	No	Only soil samples were collected – these are unlikely to have been affected by climatic conditions
Were the same types of samples collected (filtered, size fractions etc) for each media?	Yes	

Laboratory Considerations

	Yes / No	Comment
Were the same analytical methods used (including clean up)?	Yes	
Were the PQLs the same?	No	Different PQLs were used between the primary and secondary laboratories
Were the same laboratories used?	No	Eurofins-MGT was used as the primary laboratory. Envirolab was used as the secondary laboratory. Both are NATA-accredited
Were the units reported the same?	Yes	

COMPARABILITY CONCLUSION

	Yes / No	Comment
Was data adequately comparable?	Yes	

DATA REPRESENTATIVENESS

Field Considerations

	Yes / No	Comment
Was appropriate media sampled?	Yes	
Was media identified sampled?	Yes	
Were the samples properly and adequately preserved? This includes keeping the samples chilled, where applicable.	Yes	
Were the samples in proper custody between the field and reaching the laboratory?	Yes	
Were the samples received by the laboratory in good condition?	Yes	

Laboratory Considerations

	Yes / No	Comment
Were all samples analysed according to SAQP?	NA	There was no SAQP for this assessment.

REPRESENTATIVENESS CONCLUSION

	Yes / No	Comment
Was data adequately representative?	Yes	

DATA PRECISION AND ACCURACY

Field considerations

	Yes / No	Comment
Were the SOPs appropriate and complied with?	Yes	Based on available Coffey Environments Standard Operating Procedures.

Laboratory Considerations for Soil

	Metals	TPH	BTEX	PAH	OCP	РСВ	Asbestos	рН
Primary	55	24	24	28	6	6	23	48
Field QA/QC								
Intralab Dup	5, 9%	1, 4%	1, 4%	1, 4%	0, 0%	0, 0%	NA	NA
Interlab Dup	3, 5%	0, 0%	0, 0%	0, 0%	0, 0%	0, 0%	NA	NA
Trip Spike	NA	NA	0	NA	NA	NA	NA	NA
Trip Blank	NA	NA	1	NA	NA	NA	NA	NA
Wash Blanks	1	1	1	0	0	0	NA	NA
LAB QA/QC								
Lab Blanks	4	3	3	2	2	2	NA	NA
Lab Dups	9	5	5	3	2	2	NA	NA
Matrix Spikes	10	5	5	4	2	2	NA	NA
Lab Control	4	3	3	2	2	2	NA	NA
Surrogate	0	0	1	2	2	1	NA	NA

	Yes / No	Comment
Field QA/QC		
Were an adequate number of field duplicates analysed?	Yes	
Were the RPDs of the field duplicates within control limits?	No	Some RPDs exceeded control limits for heavy metals, due to sample heterogeneity
Were an adequate number of trip blanks analysed?	Yes	
Were the trip blanks free of contaminants	No	Low levels of toluene and xylenes were detected. This is inferred to be due to the water used to collect the trip blank sample
Were an adequate number of trip spikes analysed?	No	Due to the low risk of volatile contamination inferred to be present, trip spikes were not analysed
Were the trip spikes recoveries within control limits?	NA	
Were an adequate number of wash blanks analysed?	Yes	
Were the wash blanks free of contaminants?	No	Low levels of toluene and xylenes were detected. This is inferred to be due to the water used to collect the trip blank sample
Lab QA/QC		
Were an adequate number of laboratory blank samples analysed?	Yes	
Were the blanks free of contaminants?	Yes	
Were an adequate number of laboratory matrix spikes and laboratory control samples analysed?	Yes	
Were an adequate number of surrogate spike samples analysed?	Yes	

Were the spikes recoveries within control limits?	Yes	
Were an adequate number of laboratory duplicates analysed?	Yes	
Were the laboratory duplicate RPDs within control limits?	No	Laboratory duplicate RPDs exceeded control limits for some heavy metals. Eurofins-MGT reported that these exceedences met their acceptance criteria as stipulated in their SOP-05

PRECISION AND ACCURACY CONCLUSION

	Yes / No	Comment
Was soil data adequately precise?	Yes	
Was soil data adequately accurate?	Yes	

Table B1: Laboratory Methodologies (Eurofins-MGT) - Soil

Analysis	Method Based On	NATA Registered
TPH C6-C9/BTEX	Based on USEPA 8260	Yes
TPH C10-C36	Based on USEPA 8270	Yes
PAH	Based on USEPA 8270	Yes
Metals	Based on USEPA 6010/6020	Yes
Mercury	Based on USEPA 7470/71	Yes
OCP	Based on USEPA 8081	Yes
PCB	Based on USEPA 8081	Yes
рН	Eurofins-MGT Method E018	Yes
Asbestos	Safer Environmental Method 1 (NOHSC Asbestos Analysis Publications)	Yes

Table B2: Holding Times (Eurofins-MGT) - Soil

Soil Analysis	Holding Time	Maximum Time Between Sampling and Extraction	Holding Times Met
TPH C6-C9/BTEX	14 days	5 days	Yes
TPH C10-C36	14 days	5 days	Yes
PAH	14 days	5 days	Yes
Metals	28 days	3 days	Yes
ОСР	14 days	5 days	Yes
PCB	14 days	5 days	Yes
рН	7 days	8 days	No
Asbestos	NA	7 days	Yes

Table B3: Laboratory Methodologies (Envirolab)

Analysis	Method Based On	NATA Registered
Soil		
Metals	Envirolab Method Metals-020 ICP- AES	Yes
Mercury	Envirolab Method Metals 021 CV-AAS	Yes

Table B4: Soil Holding Times (Envirolab)

Soil Analysis	Holding Time	Maximum Time Between Sampling and Extraction	Holding Times Met
Heavy Metals	6 months	6 days	Yes

Appendix C
Test Pit Logs and Explanation Sheets

Soil Description Explanation Sheet (1 of 2)

DEFINITION:

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

CLASSIFICATION SYMBOL & SOIL NAME

Soils are described in accordance with the Unified Soil Classification (UCS) as shown in the table on Sheet 2.

PARTICLE SIZE DESCRIPTIVE TERMS

NAME	SUBDIVISION	SIZE	
Boulders		>200 mm	
Cobbles		63 mm to 200 mm	
Gravel	coarse	20 mm to 63 mm	
	medium	6 mm to 20 mm	
	fine	2.36 mm to 6 mm	
Sand	coarse	600 μm to 2.36 mm	
	medium	200 μm to 600 μm	
	fine	75 μm to 200 μm	

MOISTURE CONDITION

Dry Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands.

Moist Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.

Wet As for moist but with free water forming on hands when handled.

CONSISTENCY OF COHESIVE SOILS

TERM	UNDRAINED STRENGTH S _U (kPa)	FIELD GUIDE
Very Soft	<12	A finger can be pushed well into the soil with little effort.
Soft	12 - 25	A finger can be pushed into the soil to about 25mm depth.
Firm	25 - 50	The soil can be indented about 5mm with the thumb, but not penetrated.
Stiff	50 - 100	The surface of the soil can be indented with the thumb, but not penetrated.
Very Stiff	100 - 200	The surface of the soil can be marked, but not indented with thumb pressure.
Hard	>200	The surface of the soil can be marked only with the thumbnail.
Friable	_	Crumbles or powders when scraped by thumbnail.

DENSITY OF GRANULAR SOILS

TERM	DENSITY INDEX (%)
Very loose	Less than 15
Loose	15 - 35
Medium Dense	35 - 65
Dense	65 - 85
Very Dense	Greater than 85

MINOR COMPONENTS

TERM	ASSESSMENT GUIDE	PROPORTION OF MINOR COMPONENT IN:	
Trace of	Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary component.	Coarse grained soils: <5% Fine grained soils: <15%	
With some	Presence easily detected by feel or eye, soil properties little different to general properties of primary component.	Coarse grained soils: 5 - 12% Fine grained soils: 15 - 30%	

SOIL STRUCTURE

	ZONING	CEMENTING		
Layers	Continuous across exposure or sample.	Weakly cemented	Easily broken up by hand in air or water.	
Lenses	Discontinuous layers of lenticular shape.	Moderately cemented	Effort is required to break up the soil by hand in air or water.	
Pockets	Irregular inclusions of different material.			

GEOLOGICAL ORIGIN WEATHERED IN PLACE SOILS

Extremely weathered material Structure and fabric of parent rock visible.

Residual soil Structure and fabric of parent rock not visible.

TRANSPORTED SOILS

Aeolian soil Deposited by wind.

Alluvial soil Deposited by streams and rivers.

Colluvial soil Deposited on slopes (transported downslope

by gravity).

Fill Man made deposit. Fill may be significantly

more variable between tested locations than naturally occurring soils.

Lacustrine soil Deposited by lakes.

Marine soil Deposited in ocean basins, bays, beaches

and estuaries.

Soil Description Explanation Sheet (2 of 2)

SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

FIELD IDENTIFICATION PROCEDURES (Excluding particles larger than 60 mm and basing fractions on estimated mass)					usc	PRIMARY NAME		
si mm s		arse .0 mm	CLEAN GRAVELS (Little or no fines)	Wide range in grain size and substantial amounts of all intermediate particle sizes.		GW	GRAVEL	
		'ELS Ilf of co r than ?	GRAN (Lit	Predominantly one size or a range of sizes with more intermediate sizes missing.		GP	GRAVEL	
SOILS s than 60	i eye)	GRAVELS More than half of coarse fraction is larger than 2.0 mm	GRAVELS WITH FINES (Appreciable amount of fines)	Non-plastic fines (for identification procedures see ML below)		GM	SILTY GRAVEL	
AAIINED rials less 0.075 m	ne nakec	More fraction	GRAN WITH I (Appre amc of fir		Plastic fines (for identification procedures see CL below)		GC	CLAYEY GRAVEL
COARSE GRAIINED SOILS More than 50% of materials less than 63 mm is larger than 0.075 mm	ible to th	arse 2.0 mm	CLEAN SANDS (Little or no fines)	Wide range in grain sizes and substantial amounts of all intermediate sizes		SW	SAND	
CO/ an 50%	ticle visi	IDS If of coa		Predominantly one size or a range of sizes with some intermediate sizes missing.		SP	SAND	
More tha	0.075 mm particle is about the smallest particle visible to the naked eye)	SANDS More than half of coarse fraction is smaller than 2.0 mm	SANDS WITH FINES (Appreciable amount of fines)		n-plastic fines (for identification cedures see ML below).		SM	SILTY SAND
	the sma	More fraction	SA WITH (Appre am	Plastic fines (for identification procedures see CL below).		SC	CLAYEY SAND	
	out		IDENTIFICATION PR		ROCEDURES ON FRACTIONS <0.2 mm.			
שר ת	s ak	SILTS & CLAYS Liquid limit less than 50	DRY STREN	GTH	DILATANCY	TOUGHNESS		
ILS less th	rticle i		None to Low	'	Quick to slow	None	ML	SILT
ED SC aterial nan 0.0	nm pa		Medium to H	ligh	None	Medium	CL	CLAY
SRAIN of m	.075 r	SIIS 1	Low to medi	um	Slow to very slow	Low	OL	ORGANIC SILT
FINE GRAINED SOILS More than 50% of material less than 63 mm is smaller than 0.075 mm	(A 0	LAYS mit an 50	Low to medium		Slow to very slow	Low to medium	MH	SILT
		SILTS & CLAYS Liquid limit greater than 50	High		None	High	CH	CLAY
		SILT Lic grea	Medium to H	ligh	None	Low to medium	ОН	ORGANIC CLAY
HIGHLY ORGANIC Readily ident SOILS frequently by				y colour, odour, spon s texture.	gy feel and	Pt	PEAT	
• Low plasticity – Liquid Limit W _L less than 35%. • Medium plasticity – W _L between 35% and 50%.								

COMMON DEFECTS IN SOIL

TERM	DEFINITION	DIAGRAM	TERM				
PARTING	A surface or crack across which the soil has little or no tensile strength. Parallel or sub parallel to layering (eg bedding). May be open or closed.		SOFTEN ZONE				
JOINT	A surface or crack across which the soil has little or no tensile strength but which is not parallel or sub parallel to layering. May be open or closed. The term 'fissure' may be used for irregular joints <0.2 m in length.		TUBE				
SHEARED ZONE	Zone in clayey soil with roughly parallel near planar, curved or undulating boundaries containing closely spaced, smooth or slickensided, curved intersecting joints which divide the mass into lenticular or wedge shaped blocks.		TUBE CAST				
SHEARED SURFACE	A near planar curved or undulating, smooth, polished or slickensided surface in clayey soil. The polished or slickensided surface indicates that movement (in many cases very little) has occurred along the defect.		INFILLEI SEAM				

TERM	DEFINITION	DIAGRAM
SOFTENED ZONE	A zone in clayey soil, usually adjacent to a defect in which the soil has a higher moisture content than elsewhere.	A STATE OF THE STA
TUBE	Tubular cavity. May occur singly or as one of a large number of separate or inter-connected tubes. Walls often coated with clay or strengthened by denser packing of grains. May contain organic matter	
TUBE CAST	Roughly cylindrical elongated body of soil different from the soil mass in which it occurs. In some cases the soil which makes up the tube cast is cemented.	
INFILLED SEAM	Sheet or wall like body of soil substance or mass with roughly planar to irregular near parallel boundaries which cuts through a soil mass. Formed by infilling of open joints.	

Rock Description Explanation Sheet (1 of 2)

The descriptive terms used by Coffey are given below. They are broadly consistent with Australian Standard AS1726-1993.

DEFINITIONS: Rock substance, defect and mass are defined as follows:

Rock Substance In engineering terms roch substance is any naturally occurring aggregate of minerals and organic material which cannot be

disintegrated or remoulded by hand in air or water. Other material is described using soil descriptive terms. Effectively

homogenous material, may be isotropic or anisotropic.

Defect Discontinuity or break in the continuity of a substance or substances.

Any body of material which is not effectively homogeneous. It can consist of two or more substances without defects, or one or Mass

more substances with one or more defects.

SUBSTANCE DESCRIPTIVE TERMS:

ROCK NAME Simple rock names are used rather than precise

geological classification.

Grain size terms for sandstone are:

PARTICLE SIZE Coarse grained Mainly 0.6mm to 2mm Mainly 0.2mm to 0.6mm Medium grained

Mainly 0.06mm (just visible) to 0.2mm Fine grained

FABRIC Terms for layering of penetrative fabric (eg. bedding,

cleavage etc.) are:

Massive No layering or penetrative fabric.

Indistinct Lavering or fabric just visible. Little effect on properties.

Layering or fabric is easily visible. Rock breaks more Distinct

easily parallel to layering of fabric.

CLASSIFICATION OF WEATHERING PRODUCTS

Term Abbreviation Definition

Residual

HW

Soil derived from the weathering of rock; the

mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly

transported.

xw Extremely Weathered

Soil

Material is weathered to such an extent that it has soil properties, ie, it either disintegrates or can be remoulded in water. Original rock fabric

still visible.

Highly Weathered Rock

Material

Rock strength is changed by weathering. The whole of the rock substance is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not

recognisable. Some minerals are decomposed to clay minerals. Porosity may be increased by leaching or may be decreased due to the

deposition of minerals in pores

Moderately MW Weathered Rock

The whole of the rock substance is discoloured, usually by iron staining or bleaching, to the extent that the colour of the fresh rock is no

longer recognisable.

Slightly SW Weathered Rock

Rock substance affected by weathering to the extent that partial staining or partial discolouration of the rock substance (usually by limonite) has taken place. The colour and texture of the fresh rock is recognisable:

strength properties are essentially those of the fresh rock substance.

Fresh Rock FR Rock substance unaffected by weathering.

Notes on Weathering:

- 1. AS1726 suggests the term "Distinctly Weathered" (DW) to cover the range of substance weathering conditions between XW and SW. For projects where it is not practical to delineate between HW and MW or it is judged that there is no advantage in making such a distinction. DW may be used with the definition given in AS1726.
- 2. Where physical and chemical changes were caused by hot gasses and liquids associated with igneous rocks, the term "altered" may be substituted for "weathering" to give the abbreviations XA, HA, MA, SA and DA.

ROCK SUBSTANCE STRENGTH TERMS

Abbrev- Point Load Term iation

Index, I_S50 (MPa)

Field Guide

Very Low VL Less than 0.1 Material crumbles under firm

blows with sharp end of pick; can be peeled with a knife: pieces up to 30mm thick can be broken by finger pressure.

0.1 to 0.3 Low

Easily scored with a knife: indentations 1mm to 3mm show with firm bows of a pick point; has a dull sound under hammer. Pieces of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.

0.3 to 1.0 Medium

Readily scored with a knife; a piece of core 150mm long by . 50mm diameter can be broken by hand with difficulty.

Hiah 1 to 3 A piece of core 150mm long by 50mm can not be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.

Very High VH 3 to 10

Hand specimen breaks after more than one blow of a pick: rock rings under

hammer.

Extremely EH High

More than 10 Specimen requires many blows with geological pick to break; rock rings under

hammer

Notes on Rock Substance Strength:

- 1. In anisotropic rocks the field guide to strength applies to the strength perpendicular to the anisotropy. High strength anisotropic rocks may break readily parallel to the planar anisotropy.
- The term "extremely low" is not used as a rock substance strength term. While the term is used in AS1726-1993, the field guide therein makes it clear that materials in that strength range are soils in engineering terms.
- 3. The unconfined compressive strength for isotropic rocks (and anisotropic rocks which fall across the planar anisotropy) is typically 10 to 25 times the point load index (Is50). The ratio may vary for different rock types. Lower strength rocks often have lower ratios than higher strength rocks.

Rock Description Explanation Sheet (2 of 2)

COMMON ROCK MA Term	DEFECTS IN SSES Definition	Diagram	Map Symbol	Graphic Log (Note 1)	DEFECT SHAPE Planar	TERMS The defect does not vary in orientation
Parting	A surface or crack across which the rock has little or no tensile strength.		20	ied.	Curved	The defect has a gradual change in orientation
	Parallel or sub parallel to layering (eg bedding) or a planar anisotropy		Bed		Undulating	The defect has a wavy surface
	in the rock substance (eg, cleavage). May be open or closed.		Clear	vage (Note 2)	Stepped	The defect has one or more well defined steps
Joint	A surface or crack across which the rock has little or no tensile strength.				Irregular	The defect has many sharp changes of orientation
	but which is not parallel or sub parallel to layering or planar anisotropy in the rock substance.		60	(Note 2)		sment of defect shape is partly by the scale of the observation.
	May be open or closed.			(1016-2)	ROUGHNESS Slickensided	TERMS Grooved or striated surface, usually polished
Sheared Zone (Note 3)	Zone of rock substance with roughly parallel near planar, curved or				Polished	Shiny smooth surface
(14010-0)	undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into		35	11/2/2	Smooth	Smooth to touch. Few or no surface irregularities
	•	71111		[4]	Rough	Many small surface irregularities (amplitude generally less than 1mm). Feels like fine to coarse sand paper.
Sheared Surface (Note 3)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided.		40	2 3500	Very Rough	Many large surface irregularities (amplitude generally more than 1mm). Feels like, or coarser than very coarse sand paper.
Crushed Seam	Seam with roughly parallel almost planar boundaries, composed of				COATING TER	MS No visible coating
(Note 3)	disoriented, usually angular fragments of the host rock substance which may be more	(a)	50		Stained	No visible coating but surfaces are discoloured
	weathered than the host rock. The seam has soil properties.			12)	Veneer	A visible coating of soil or mineral, too thin to measure; may be patchy
Infilled Seam	Seam of soil substance usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams less than 1mm thick may be described as veneer or coating on joint surface.			65	Coating	A visible coating up to 1mm thick. Thicker soil material is usually described using appropriate defect terms (eg, infilled seam). Thicker rock strength material is usually described as a vein.
					BLOCK SHAPI	E TERMS Approximately
Extremely Weathered	thered gradational boundaries. Formad by		32	∡ leli	•	equidimensional
Seam	weathering of the rock substance in place.		TITA	EL STATE	Tabular	Thickness much less than length or width
		Seam		[2]	Columnar	Height much greate than cross section

Notes on Defects:

- 1. Usually borehole logs show the true dip of defects and face sketches and sections the apparent dip.
- 2. Partings and joints are not usually shown on the graphic log unless considered significant.

Sheet

TP1

1 of 1

ENAUWARA04363AA

Office Job No.: Date started:

Excavation No.

16.4.2013

HARDIE HOLDINGS

Date completed:

16.4.2013

Principal: Project:

BELLBIRD HEIGHTS

Logged by:

LB

Test pit location:

Checked by:

equipment type and model: **EXCAVATOR** Pit Orientation: Easting: 3251047 m R.L. Surface: excavation dimensions: 3.5m long Northing: 15119576 m datum: excavation information material substance pocket penetro-meter classification symbol material penetra structure and additional observations samples, graphic l tests, etc soil type: plasticity or particle characteristics, colour, secondary and minor components. depth RL 200 7 123 metre FILL: Sandy Gravel, fine to coarse grained, brown, some clay, some boulders at 0.2m depth. Coal chitter at 0.5m depth. Ш FILL (mining overburden) E F 0.5 Е 1.0 1.5 FILL: Silty Clay, low to medium plasticity, orange/red, with some sand, some coal chitter, some boulders and fine grained gravel at 2.2m. FILL (mining overburden) E 2.0 2.5 W Water inflow at 2.5m E 3.0 GRAVEL: fine to coarse grained, red, some sand. EXTREMELY WEATHERED SANDSTONE 3.5 E 4.0 support Treatepits โกโดยเลยาย่อย at 4m classification symbols and consistency/density index undisturbed sample 50mm diameter diatube N nil soil description DT S shoring VS very soft undisturbed sample 63mm diameter U soft soild stem flight auger hollow stem flight auge SS disturbed sample system firm GEO 5.2 Issue 3 Rev.2 vane shear (kPa) stiff St V Bit, T Bit bulk sample moisture VSt very stiff environmental sample dry moist AH air hammer H hard CP refusal friable cable percussive Fb HA wet VL very loose plastic limit non-destructive digging NDD on date shown loose liquid limit MD medium dense RC rock corer water inflow dense ■ water outflow very dense

28.5.13 TEST PIT_FULL PAGE ENAUWARA04363AA.GPJ COFFEY.GDT

BELLBIRD HEIGHTS

Project:

Sheet 1 of 1 ENAUWARA04363AA Office Job No.:

Excavation No.

Logged by:

TP2

LB

HARDIE HOLDINGS 16.4.2013 Client: Date started:

16.4.2013 Principal: Date completed:

Test pit location: Checked by:

equipme	nt t	(De	and	model:	EXC	VATOR	2		Pit Orientation:	Easting:	325	1041 m)	RI	L. Surface:
excavatio	- 5						` 1m wid	A	, a challanott	Northing:		19587			tum:
	F1110			mation	0.0111	iong	_	_	ubstance	Northing.	101	13307		Ua	turr.
penetration	notes samples, tests, etc depth RL metres b					depth metres		classification symbol	material soil type: plasticity or particle o	haracteristics,		moisture	consistency/ density index	200 pocket 300 a penetro- 400 meter	
Ш		T		E		T -	[}]]}	SM	TOPSOIL: Silty Sand, fine to mediu brown, some fine to medium graine	ım grained, dar	rk es,	М		- 264	FILL (mining overburden)
				E		0.5		GW	boulders and coal chitter. FILL: Sandy Gravel, fine to coarse brown/mottled yellow, some clay.	grained,					FILL (mining overburden)
			3 2	E		1. <u>0</u>									
						1. <u>5</u>								*	
						2.0									
				Е		2.5			FILL: Sand, fine to medium grained trace of clay and gravel.	, red/pink with					FILL (mining overburden)
						-			Test pit TP2 terminated at 2.5m						
						3.0									
=======================================						3. <u>5</u>									
method					sı	4.0			notes, samples, tests	cla	assifica	ation syn	nbols an	d	consistency/density index
DT diatube S shoring N nil PT push tube SS solid stem flight auger HS hollow stem flight auger VT V Bit, T Bit AH air hammer CP cable percussive HA hand auger NDD non-destructive digging			nce	U ₅₀ undisturbed sample 50mm di U ₆₁ undisturbed sample 63mm di D disturbed sample V vane shear (kPa) Bs bulk sample E environmental sample R refusal	ameter so ameter ba	sed on stem oisture dry mo	ription unified o	dassifica		VS very soft S soft F frm SI stiff VSt very stiff H hard Fb friable VI very loose L loose					
RC rock corer water inflow water outflow						W.		uld limit			MD medium dense D dense VD very dense				

HARDIE HOLDINGS

Sheet

Excavation No.

1 of 1

LB

TP3

Office Job No.:

ENAUWARA04363AA

very dense

VD

Date started:

16.4.2013

Date completed:

16.4.2013

Project:

Principal:

Client:

BELLBIRD HEIGHTS

water outflow

Logged by:

Checked by:

Test pit location: **EXCAVATOR** equipment type and model: Pit Orientation: Easting: 3251034 m R.L. Surface: excavation dimensions: 3.5m long Northing: 15119573 m datum: excavation information material substance pocket penetro-meter material notes penetrat classificati symbol structure and additional observations samoles. graphic tests, etc kPa depth soil type: plasticity or particle characteristics, RL 9889 colour, secondary and minor components. 123 TOPSOIL: Silty sand, fine to medium grained, fine to medium grained, dark brown, some gravel. TOPSOIL ш E FILL: Sandy Gravel, fine to coarse grained, grey/brown, fine to medium grained sand. FILL (mining overburden) 0.5 FILL: Silty Sand, fine to medium grained, red/pink, some gravel. FILL (mining overburden) FILL: Sandy Gravel, fine to coarse grained, orange/red, fine to medium grained sand. FILL (mining overburden) E 1.0 1.5 2.0 Test pit TP3 terminated at 2.2m 2.5 3.0 3.5 notes, samples, tests classification symbols and consistency/density index method support undisturbed sample 50mm diameter undisturbed sample 63mm diameter diatube S shoring N nil soil description VS very soft push tube based on unified classification soft SS soild stem flight auger firm GEO 5.2 Issue 3 Rev.2 penetration HS VT hollow stem flight auge V Bit, T Bit vane shear (kPa) St stiff bulk sample very stiff Bs moisture AH CP hard friable air hammer environmental sample H refusa! moist cable percussive Fb НА very loose hand auger water level plastic limit loose medium dense NDD non-destructive digging on date shown liquid limit MD RC rock corer water inflow dense

1 of 1 Sheet ENAUWARA04363AA Office Job No.:

Excavation No.

TP4

LB

16.4.2013 HARDIE HOLDINGS Date started: Client:

16.4.2013 Date completed: Principal:

BELLBIRD HEIGHTS Logged by: Project: Checked by: Test pit location:

_			and	model: E	XCAV	ATOR	0		Pit Orientation: Easting	: 32	5103 m		R.L	. Surface:
	vation				3.5m lor		m wide	9	Northin		119583	m	dati	
		-		mation		5		-	Ibstance					
method	123	support	water	notes samples, tests, etc	RL m	depth netres	graphic log	classification symbol	material soil type: plasticity or particle characterist colour, secondary and minor component	ics, ts.	moisture	consistency/ density index	100 pocket 200 pocket 300 penetro- 400 meter	structure and additional observations
ш				Е				CL	FILL: Clay, low to medium plasticity, dark broat to medium sand and gravel.	vn, fine	М			FILL (mining overburden)
						_		GW	FILL: Sandy Gravel, fine to coarse grained, grey/brown/mottled orange, some boulders.					FILL (mining overburden)
				Е	-	0. <u>5</u> - -								-
						1. <u>0</u>								
						-		CL	FILL: Sandy Clay, low to medium plasticity, re to medium sand and gravel.	d, fine				FILL (mining overburden)
				Е		1. <u>5</u> - -								
						2.0			Test pit TP4 terminated at 2m					-
						2. <u>5</u>								2
						3.0								5 4 3
						3. <u>0</u> - -								
						3. <u>5</u> -								_
met DT	thod	diate	be			4.0	N	nil	notes, samples, tests U ₅₀ undisturbed sample 50mm diameter		cation sy	mbols a	nd	consistency/density index VS very soft
PT SS HS VT AH CP		pusi soild holld V Bi air h	tube I stem ow ste t, T Bi amme e perc	er oussive	pen 1 2 1 3 Wate	etratio 3 4 er	n no resista rang'ng to refusal	ince	Ues undisturbed sample 63mm diameter D disturbed sample V vane shear (kPa) Bs bulk sample E environmental sample R refusal	based of system moistu D of M r	on unified re Iry noist	classifica	ation	S soft F firm - St stiff VSt very stiff H hard Fb friable VL very loose
HA NDI RC	D	non	d auge destri corer	active digging	<u>×</u>	water	e showr	1		Wp p	vet Pastic lim iquid limit			L loose MD medium dense D dense VD very dense

BELLBIRD HEIGHTS

Project:

1 of 1 ENAUWARA04363AA Office Job No.:

Excavation No.

Logged by:

TP5

LB

HARDIE HOLDINGS 16.4.2013 Date started: Client:

16.4.2013 Date completed: Principal:

Checked by: Test pit location:

equipme	ent tv	ne and	l model: F	XCAVATOR	?		Pit Orientation: Easti	ng: 3	251025 m		R.I.	. Surface:
excavation	34400 (3-31 -5 1)				` 1m wide)	North		5119593 1		datu	
_	- VA		rmation		-		ubstance	<i>3</i>		0.0		
method 12	Delici ario	water	notes samples, tests, etc	depth RL metres	graphic log	classification symbol	material soil type: plasticity or particle character colour, secondary and minor compon	istics, ents.	moisture condition	consistency/ density index	100 x pocket 200 x penetro- 300 w meter	structure and additional observations
w			E	1. <u>0</u> 1. <u>5</u> 2. <u>0</u>		GW CL	FILL: Sandy Clay, low to medium plasticity, brown, fine to medium grained sand with so coarse grained gravel. FILL: Sandy Gravel, fine to coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, brown/grey/mottled yellow, some coal chilter of the coarse grained, and the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow, some coal chilter of the coarse grained yellow.	dark me fine to 	M			FILL (mine overburden) FILL (mine overburden) FILL (mine overburden)
method DT PT SS HS VT AH CP HA NDD RC	dia pu so ho V air ca ha	llow ste Bit, T B hamm ble per nd aug	n flight auger em flight auger it er cussive er uctive digging	water water	no resista ranging to refusal level te shown inflow		notes, samples, tests U ₅₀ undisturbed sample 50mm diameter U ₆₃ undisturbed sample 63mm diameter D disturbed sample V vane shear (kPa) Bs bulk sample E environmental sample R refusal	soil di based syster moist D M W		classifica		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

HARDIE HOLDINGS

Principal: Project:

BELLBIRD HEIGHTS

1 of 1 Office Job No.:

Excavation No.

ENAUWARA04363AA

Date started: Date completed: 16.4.2013 16.4.2013

Logged by:

LB

Checked by: Test pit location:

equipm	nent	type	and	model: I	EXCAVAT	TOR		Pit Orientation:	Easting:	3251	019 m		R.L	. Surface:
excavat	tion	dim	ensic	ons:	2m long				Northing:	1511	95875	m	date	Jm:
excav	vat	ion	info	rmation		m	aterial s	ubstance						
9	S penetration	support	water	notes samples, tests, etc	de RL met	bth craphic log	classification	material soil type: plasticity or partic colour, secondary and mi	ele characteristics,	Ž	moisture	consistency/ density index	200 A pocket 300 B penetro- 400 meter	structure and additional observations
ш				E		. <u>5</u>	CL SP	TOPSOIL: Sand, dark brown, member fine grained gravel. FILL: Sandy Clay, low to mediu orange/cottled white/grey, some cobbles and boulders. FILL: Sandy Clay, low to mediu some fine to coarse gravel.	m plasticity, e fine to coarse gra	avel,	М			TOPSOIL FILL (mining overburden) FILL (mining overburden)
	H	-		E	1	.0 🔆	X	Test pit TP6 terminated at 1m					+++	
					2	.505								
method DT PT SS HS VT AH CP HA NDD RC		soild hollo V Bit air hi cable hand non-	tube stem w ster T Bit amme perc auge	flight auger m flight auger er ussive er octive digging	suppo S short penetr 1 2 3 water water water	ration	own /	notes, samples, tests U ₅₀ undisturbed sample 50n U ₆₃ undisturbed sample 63n D disturbed sample V vane shear (kPa) Bs bulk sample E environmental sample R refusal	nm diameter so nm diameter ba sy	l moi / wet /p plas	iption unified o	dassifica		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

HARDIE HOLDINGS

Principal:

TEST PIT_FULL PAGE ENAUWARA04363AA,GPJ COFFEY.GDT 28.5.13

BELLBIRD HEIGHTS Project:

Excavation No. TP7

1 of 1 Sheet

ENAUWARA04363AA Office Job No.:

16.4.2013

16.4.2013 Date started:

Date completed:

LB Logged by:

Checked by: Test pit location: equipment type and model: Easting: 32510193 m R.L. Surface: **EXCAVATOR** Pit Orientation: Northing: 151200104 m datum: excavation dimensions: 2m long material substance excavation information pocket penetro-meter classification symbol penetration material structure and additional observations samples, graphic l method support kPa water soil type: plasticity or particle characteristics, colour, secondary and minor components. tests, etc depth RL metres 200 4 123 TOPSOIL TOPSOIL: Sand, dark brown, medium to coarse SP grained, some fine grained gravel.
FILL: Sandy Clay, low to medium plasticity, FILL (mining overburden)

		Е	0.5	greV/mottled orange/black medium to coarse some gravel and coal chitter, some cobble an boulders.	sand and	-
			1.0 - - - 1.5 - - - - - - - - - - - - - - - - - - -	FILL: Sandy Clay, low to medium plasticity, r	ed.	FILL (mining overburden)
2		E	2.0	Test pit TP7 terminated at 2m		_
IEST PITT			2. <u>5</u>			- - - - -
יייייייייייייייייייייייייייייייייייייי			3. <u>0</u> - - - 3. <u>5</u>			-
9	method DT	diatube	4.0 support S shoring N nil	notes, samples, tests U ₅₀ undisturbed sample 50mm diameter	classification symbols and soil description	consistency/density index VS very soft
Form GEO 5.2 Issue 3 Rev.2	PT SS	push tube soild stem flight auger hollow stem flight auger V Bit, T Bit air hammer cable percussive hand auger non-destructive digging rock corer	penetration 1 2 3 4 no resistance ranging to water water water level	Us undisturbed sample 63mm diameter D disturbed sample V vane shear (kPa) Bs bulk sample E environmental sample R refusal	based on unified classification system moisture D dry M moist W wet Wp plastic limit W, liquid limit	S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

HARDIE HOLDINGS

Principal:

BELLBIRD HEIGHTS

■ water outflow

Excavation No.

TP8

1 of 1 Sheet Office Job No.:

ENAUWARA04363AA

Date started:

1.5.2013

Date completed:

1.5.2013

Logged by:

LB

Project: Checked by: Test pit location: Easting: R.L. Surface: equipment type and model: **EXCAVATOR** Pit Orientation: Northing: datum: excavation dimensions: 2m long 0.5m wide excavation information material substance pocket penetro-meter classification symbol penetration material notes structure and additional observations samples, support graphic method kPa soil type: plasticity or particle characteristics, colour, secondary and minor components. tests, etc depth 5889 RL metres 123 FILL (mining overburden) FILL: Sandy Clay, low to medium plasticity, E brown/mottled orange/grey, some coarse gravel and coal chitter, some cobbles and boulders. E 0.<u>5</u> FILL (mining overburden) FILL: Sandy Clay, low to medium plasticity, red. E 1.0 Test pit TP8 terminated at 1m 1.5 2.0 2.5 3.0 3.5 classification symbols and consistency/density index notes, samples, tests U₅₀ undisturbed samp!e 50mm diameter support method soil description very soft N nil S shoring based on unified classification system soft U₆₃ undisturbed sample 63mm diameter push tube PT SS soild stem flight auger D disturbed sample penetration vane shear (kPa) St stiff HS VT hollow stem flight auge V Bit, T Bit very stiff VSt bulk sample environmental sample Bs moisture hard friable АН air hammer moist wet Fb cable percussive CP very loose hand auger HA water level on date shown plastic limit loose NDD non-destructive digging MD medium dense liquid limit rock corer RC dense very dense water inflow

TEST PIT_FULL PAGE ENAUWARA04363AA.GPJ COFFEY.GDT 28.5.13

HARDIE HOLDINGS

BELLBIRD HEIGHTS

water outflow

Sheet

1 of 1

ENAUWARA04363AA Office Job No.:

1.5.2013

TP9

Date started:

Excavation No.

1.5.2013

very dense

Date completed:

Logged by:

LB

Test pit location:

Principal: Project:

Checked by:

Pit Orientation: equipment type and model: **EXCAVATOR** Easting: R.L. Surface: excavation dimensions: Northing: datum: m long m wide material substance excavation information pocket penetro-meter classification symbol material penetrat notes structure and additional observations samples, tests, etc soil type: plasticity or particle characteristics, colour, secondary and minor components. kPa depth RL 9889 123 FILL: Sandy Clay, low to medium plasticity, red/brown/mottled grey,some cobbles and boulders. FILL (mining overburden) F Е 0.5 FILL: Sandy Clay, low to medium plasticity, FILL (mining overburden) red/orange, some coal chitter. 1.0 Test pit TP9 terminated at 1m 1.5 2.0 2.5 3.0 3.5 4.0 classification symbols and consistency/density index notes, samples, tests support S shoring method soil description based on unified classification undisturbed sample 50mm diameter PT SS push tube soild stem flight auger undisturbed sample 63mm diameter disturbed sample S soft D GEO 5.2 Issue 3 Rev.2 HS VT hollow stem flight auge vane shear (kPa) St stiff VSt moisture very stiff V Bit T Bit Bs bulk samole AH air hammer environmental sample dry CP HA friab!e cable percussive refusal moist Fb VL wet very loose water level on date shown hand auger loose medium dense NDD non-destructive digging plastic limit L MD liquid limit RC rock corer water inflow

Principal:

HARDIE HOLDINGS

BELLBIRD HEIGHTS

water inflow

water outflow

Excavation No. TP 10

1 of 1

Sheet Office Job No.:

ENAUWARA04363AA

dense very dense

Date started: 1.5.2013 Date completed:

1.5.2013

Logged by:

LB

Project: Checked by: Test pit location: Pit Orientation: Easting: R.L. Surface: equipment type and model: **EXCAVATOR** m Northing: datum: m excavation dimensions: 2m long excavation information material substance pocket penetro-meter classification symbol penetratio material notes structure and additional observations samples, kPa soil type: plasticity or particle characteristics, colour, secondary and minor components. tests, etc depth metres 2002 RL 123 TOPSOIL: Sand, fine to medium grained, Е orange/brown. EXTREMELY WEATHERD SANDSTONE SANDSTONE: fine grained, red. E 0.5 Test pit TP 10 terminated at 0.8m 1.0 1.5 2.0 2.5 3.0 3.5 4.0 notes, samples, tests classification symbols and consistency/density index support S shoring method very soft soft undisturbed sample 50mm diameter soil description based on unified classification U₆₃ push tube undisturbed sample 63mm diameter soild stem flight auger disturbed sample firm SS stiff St HS hollow stem flight auger vane shear (kPa) very stiff moisture VT AH Bs bulk sample V Bit, T Bit environmental sample hard air hammer friable moist Fb CP cable percussive refusal very loose hand auger non-destructive digging water level on date shown HA plastic limit NDD loose medium dense liquid limit RC rock corer

water outflow

HARDIE HOLDINGS

Principal:

BELLBIRD HEIGHTS

Project:

Date started: Date completed:

Excavation No.

Office Job No.:

Sheet

TP 11

1.5.2013

1.5.2013

ENAUWARA04363AA

1 of 1

LB Logged by:

Checked by: Test pit location: R.L. Surface: Easting: Pit Orientation: equipment type and model: EXCAVATOR datum: Northing: 2m long 0.5m wide excavation dimensions: material substance excavation information consistency/ density index pocket penetro-meter classification symbol material structure and additional observations notes penetrat graphic l samples, support kPa soil type: plasticity or particle characteristics, colour, secondary and minor components. tests, etc depth RL metres 92000 123 TOPSOIL: Sandy Clay, low to medium plasticity, ш E EXTREMLEY WEATHERED SANDSTONE SANDSTONE: medium to coarse grained, orange/red mottled grey/white. 0.5 Test pit TP 11 terminated at 0.8m 1.0 1.5 2.0 2.5 3.0 3.5 40 consistency/density index classification symbols and notes, samples, tests support S shoring method undisturbed sample 50mm diameter undisturbed sample 63mm diameter VS very soft based on unified classification system diatube push tube Un firm disturbed sample vane shear (kPa) D soild stem flight auger hollow stem flight auger stiff no resistance ranging to refusal St V HS VT very stiff bulk sample moisture Bs V Bit, T Bit dry hard environmental sample AH CP air hammer cable percussive friable M W Fb moist R refusal VL very loose wet HA loose plastic limit non-destructive digging medium dense NDD MD liquid limit rock corer RC dense water inflow very dense

HARDIE HOLDINGS

Principal:

Project:

BELLBIRD HEIGHTS

Excavation No. TP 12

1 of 1 Sheet

ENAUWARA04363AA Office Job No.:

1.5.2013 Date started:

1.5.2013 Date completed:

Logged by:

LB

Test pit l	locat	ion:							(Checke	ed by:	
equipment			model: E	XCAVATOR	₹		Pit Orientation: Easting:	m			R.	L. Surface:
excavation				m long 0.	5m wid		Northing:	m			da	atum:
excavat poutpup to be the transport to transport to the transport to the transport to transport to the trans	upport	water	notes samples,	depth RL metres	hic log	classification symbol	material soil type: plasticity or particle characteristics colour, secondary and minor components.	3,	moisture	consistency/ density index	100 200 A pocket 300 a penetro-	
± 123 ш	3 0	>	Е	0.5		SP	TOPSOIL: Sand, fine to medium grained, dark brown. SANDSTONE: fine to medium grained, red.		М			TOPSOIL EXTREMELY WEATHERED SANDSTONE
method DT PT SS HS VT AH CP HA NDD RC	dia pus soil ho! V E air cat har	ow str it, T B hamm ile per id aug	n flight auger em flight auge iit ier cussive	2.0 2.5 3.0 3.5 4.0 support S shorin penetrat 1 2 3 4 water water water water	9	to	notes, samples, tests U ₅₅ undisturbed sample 50mm diameter U ₂₀ undisturbed sample 63mm diameter D ₂₁ disturbed sample V vane shear (kPa) Bs bulk sample E environmental sample R refusal	soil de based system moistu D M	scription on unified	d classific		consistency/density index VS very soft S soft F firm St stiff VSt very sbiff H hard Fb friable VL very loose L loose MD medium dense

TEST PIT_FULL PAGE ENAUWARA04363AA.GPJ COFFEY.GDT 28.5.13

HARDIE HOLDINGS

Principal:

BELLBIRD HEIGHTS Project:

Excavation No. TP 13

1 of 1

ENAUWARA04363AA Office Job No.:

1.5.2013 Date started:

1.5.2013 Date completed: LBLogged by:

Troject.						C	Checke	d by:	
Test pit location:	CAVATOR			Pit Orientation: Easting:	m		Jilouno		L. Surface:
PE 4003 PAN	n long 0.5		9	Northing:	m				atum:
excavation dimensions: 2m excavation information	niong 0.5			ibstance					
po en tro notes samples,	depth RL metres	hic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.		moisture condition	consistency/ density index	200 y pocket 200 d penetro-	400
Ш	-	<u> </u>	SP	TOPSOIL: Sand, medium to coarse grained, dark brown, some gravel. SANDSTONE: fine to coarse grained, red.		М			EXTREMELY WEATHERED SANDSTONE -
method DT diatube PT push tube SS solid stem flight auger HS hollow stem flight auger VT VBit, T Bit	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 support s shoring penetration 2 3 4	1	N nil	notes, samples, tests U ₅₀ undisturbed sample 50mm diameter U ₆₁ undisturbed sample 63mm diameter D disturbed sample V vane shear (kPa) Bs bulk sample	soil des based d system moistu	scription on unified re	ymbols a		consistency/density index VS very soft S soft F firm St stiff VSt very stiff
SS solid stem flight auger HS hollow stem flight auger VT VBit, TBit AH air hammer CP cable percussive HA hand auger NDD non-destructive digging RC rock corer	water water	ite show r inflow		R refusal	M moist Fb fr W wet VL W Wp plastic limit L liquid limit MD m D d MD D d MD D d MD MD				Fb friable VL very loose L loose MD medium dense D dense

HARDIE HOLDINGS

Principal:

Test pit location:

Project: BELLBIRD HEIGHTS Excavation No.

TP 14

1 of 1 Sheet Office Job No.:

ENAUWARA04363AA

Date started:

1.5.2013 1.5.2013

Date completed:

Logged by:

LB

Checked by:

equipme	ent t	type	and	model: E	XCAVATOR	?		Pit Orientation:	Easting:	m			R.I	Surface:
excavation	ion	dime	ensio	ns: 2	m long 0.				Northing:	m			da	um:
excav	ati	on i	nfor	mation		60		bstance						1
method 1		support	water	notes samples, tests, etc	depth RL metres	graphic log	classification symbol	material soil type: plasticity or particle ch	aracteristics,		moisture condition	consistency/ density index	200 A pocket 300 B penetro- 400 meter	
w l				E	0.5 1.0 1.5 2.0 2.5		CL	Sandy CLAY: low to medium plastic meium grained, some fine to coarse Gravels becoming cobbles at 0.5m. Test pit TP 14 terminated at 2m	ty, red, fine to grained grave		М			EXTREMELY WEATHERED SANDSTONE
method DT PT SS HS VT AH CP HA NDD RC		soild holld V Bi air h cabl han-	tube I stem ow ste t, T Bi amme e per d aug	n flight auger em flight auge it er cussive er uctive digging	support S shoring penetrati 1 2 3 4 water water	on no resistan ranging to refusal r level ate shown r inflow		notes, samples, tests U ₅₀ undisturbed sample 50mm d U ₆₄ undisturbed sample 63mm d D disturbed sample V vane shear (kPa) Bs bulk sample E environmental sample R refusal	iameter so iameter ba sy	oil des ased c ystem noistur d I n / v	cation sy scription on unified re lry noist vet vlastic limit	classific		consistency/density index VS Sery soft S Soft F F firm St St Stiff VSt Very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

1 of 1 Sheet ENAUWARA04363AA Office Job No.:

Excavation No.

Logged by:

TP 15

LB

1.5.2013 HARDIE HOLDINGS Date started: Client:

1.5.2013 Date completed: Principal:

BELLBIRD HEIGHTS Project: Checked by: Test pit location:

Test pit	t loca	tion:									hecke	d by:		_
equipme	ent typ	e and	l model: E	XCAVAT	OR		Pit Orientation:	Easting:	m			R.I	Surface:	
excavation	_			.5m long		-		Northing:	m			dal	tum:	_
-	-	info	rmation		ma	T	ıbstance			-	_		T	_
method 1	1.5	water	notes samples, tests, etc	der RL metr	sa upo graphic log	classification symbol	material soil type: plasticity or particle colour, secondary and mino	characteristics, r components.		moisture	consistency/ density index	200 A pocket 300 a penetro- 400 meter		
method	dia pu	tube	E	1. 1. 2 2 2 3 3 3 4 suppo S sho	.5.5	CL N nil	notes, samples, tests U ₂₀ undisturbed sample 50mm U ₄₃ undisturbed sample 63mm	clicity, red, fine to	lassifidation de la companya de la c	M cation sy cription n unified	mbols a	nd	consistency/density index VS very soft S soft F firm	
SS HS VT AH CP HA NDD RC	soi VE air cal ha	ld ster low st lit, T E hamn ble per nd aug	n flight auger em flight auger Sit her roussive ger ructive digging	water water water water	ration 4 no resirangin refusal ater level date sho ater inflow ater outflo	g to wn	D disturbed sample V vane shear (kPa) Bs bulk sample E environmental sample R refusal	m D M W	M m V w Vp p				F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense	

Appendix D
Laboratory Reports and Chain of Custody
Documentation

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304

Attention: Damien Hendrickx

Report 376070-S

Client Reference BELLARD HEIGHTS ENAUWARA04363AA

Received Date Apr 18, 2013

WORLD RECOGNISED
ACCREDITATION

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			DS1	DS2	SS1	SS2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-Ap13600	S13-Ap13601	S13-Ap13603	S13-Ap13604
Date Sampled			Apr 15, 2013	Apr 15, 2013	Apr 16, 2013	Apr 16, 2013
Test/Reference	LOR	Unit	•	•		•
Total Recoverable Hydrocarbons - 1999 NEPM Fra						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	21	21	26	24
TRH C15-C28	50	mg/kg	< 50	58	150	120
TRH C29-C36	50	mg/kg	< 50	120	200	100
TRH C10-36 (Total)	50	mg/kg	< 50	200	380	240
втех	•					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	89	88	88	91
Total Recoverable Hydrocarbons - Draft 2010 NEF	M Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	55	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	140	280	210
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	< 1	< 1	< 1
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.7

Client Sample ID Sample Matrix			DS1 Soil	DS2 Soil	SS1 Soil	SS2 Soil
Eurofins mgt Sample No.			S13-Ap13600	S13-Ap13601	S13-Ap13603	S13-Ap13604
Date Sampled			Apr 15, 2013	Apr 15, 2013	Apr 16, 2013	Apr 16, 2013
Test/Reference	LOR	Unit				
Polyaromatic Hydrocarbons (PAH)						
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH	1	mg/kg	< 1	< 1	< 1	1.2
2-Fluorobiphenyl (surr.)	1	%	99	104	104	105
p-Terphenyl-d14 (surr.)	1	%	78	84	80	82
Heavy Metals						
Arsenic	2	mg/kg	5.3	4.2	7.7	3.9
Cadmium	0.4	mg/kg	< 0.4	0.7	< 0.4	< 0.4
Chromium	5	mg/kg	15	18	16	13
Copper	5	mg/kg	6.3	16	18	23
Lead	5	mg/kg	16	50	24	14
Mercury	0.05	mg/kg	< 0.05	< 0.05	0.06	0.05
Nickel	5	mg/kg	7.8	18	22	18
Zinc	5	mg/kg	27	140	35	25
% Moisture	0.1	%	34	35	32	17

Client Sample ID Sample Matrix Eurofins mgt Sample No.			SS3 Soil S13-Ap13605	TP1_0.0-0.1 Soil S13-Ap13606	TP2_0.0-0.1 Soil S13-Ap13612	TP2_0.9-1.0 Soil S13-Ap13614
Date Sampled			Apr 16, 2013	Apr 16, 2013	Apr 16, 2013	Apr 16, 2013
Test/Reference	LOR	Unit	Apr 10, 2013	Apr 10, 2013	Apr 10, 2013	Apr 10, 2013
Total Recoverable Hydrocarbons - 1999 NEPM		Utill				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	25	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	160	< 50	< 50	64
TRH C29-C36	50	mg/kg	140	< 50	100	56
TRH C10-36 (Total)	50	mg/kg	330	< 50	100	120
BTEX	1 00	g/g		100		1.20
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	91	93	92	91
Total Recoverable Hydrocarbons - Draft 2010 N	IEPM Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	270	< 100	< 100	110
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	-	< 0.5	-	-

Client Sample ID			SS3 Soil	TP1_0.0-0.1 Soil	TP2_0.0-0.1	TP2_0.9-1.0 Soil
Sample Matrix						1
Eurofins mgt Sample No.			S13-Ap13605	S13-Ap13606	S13-Ap13612	S13-Ap13614
Date Sampled			Apr 16, 2013	Apr 16, 2013	Apr 16, 2013	Apr 16, 2013
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls (PCB)						
Aroclor-1232	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1242	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1248	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1254	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1260	0.5	mg/kg	-	< 0.5	-	-
Total PCB	0.5	mg/kg	-	< 0.5	-	-
Dibutylchlorendate (surr.)	1	%	-	94	-	-
Organochlorine Pesticides (OC)						
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.2	mg/kg	-	< 0.2	-	-
a-BHC	0.05	mg/kg	-	< 0.05	-	-
a-Chlordane	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	=
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	-
Endrin ketone	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
g-Chlordane	0.05	mg/kg	-	< 0.05	-	-
Heptachlor	0.05	mg/kg	-	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	-
Methoxychlor	0.2	mg/kg	-	< 0.2	-	-
Dibutylchlorendate (surr.)	1	%	-	94	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	83	-	=
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	< 1	1.1	< 1
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	1.2	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	1.1	< 0.5
Total PAH	1	mg/kg	< 1	< 1	5.7	< 1
2-Fluorobiphenyl (surr.)	1	%	100	100	102	101

Client Sample ID Sample Matrix			SS3 Soil	TP1_0.0-0.1 Soil	TP2_0.0-0.1 Soil	TP2_0.9-1.0 Soil
Eurofins mgt Sample No.			S13-Ap13605	S13-Ap13606	S13-Ap13612	S13-Ap13614
Date Sampled			Apr 16, 2013	Apr 16, 2013	Apr 16, 2013	Apr 16, 2013
Test/Reference	LOR	Unit				
Polyaromatic Hydrocarbons (PAH)						
2-Fluorobiphenyl (surr.)	1	%	100	100	102	101
p-Terphenyl-d14 (surr.)	1	%	78	80	83	81
Heavy Metals						
Arsenic	2	mg/kg	3.1	13	4.8	4.9
Cadmium	0.4	mg/kg	0.8	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	18	7.5	13	< 5
Copper	5	mg/kg	16	7.2	20	13
Lead	5	mg/kg	25	9.4	30	7.5
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	0.09
Nickel	5	mg/kg	21	8.3	37	< 5
Zinc	5	mg/kg	54	26	55	8.4
% Moisture	0.1	%	19	17	12	21

Client Sample ID			TP3_0.0-0.1	TP3_0.9-1.0	TP4_0.0-0.1	TP4_0.4-0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-Ap13616	S13-Ap13617	S13-Ap13618	S13-Ap13619
Date Sampled			Apr 16, 2013	Apr 16, 2013	Apr 16, 2013	Apr 16, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	30	< 20	38	< 20
TRH C15-C28	50	mg/kg	180	< 50	260	< 50
TRH C29-C36	50	mg/kg	160	< 50	160	< 50
TRH C10-36 (Total)	50	mg/kg	370	< 50	460	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	96	95	93	95
Total Recoverable Hydrocarbons - Draft 2010 N	IEPM Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	54	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	290	< 100	390	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			TP3_0.0-0.1	TP3_0.9-1.0	TP4_0.0-0.1	TP4_0.4-0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-Ap13616	S13-Ap13617	S13-Ap13618	S13-Ap13619
Date Sampled			Apr 16, 2013	Apr 16, 2013	Apr 16, 2013	Apr 16, 2013
Test/Reference	LOR	Unit				
Polyaromatic Hydrocarbons (PAH)						
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	< 1	< 1	< 1
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	0.6	< 0.5	0.6	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	1.4	< 0.5	1.2	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH	1	mg/kg	2.0	< 1	1.8	< 1
2-Fluorobiphenyl (surr.)	1	%	106	102	100	103
p-Terphenyl-d14 (surr.)	1	%	83	83	72	83
Heavy Metals						
Arsenic	2	mg/kg	3.9	4.8	5.4	< 2
Cadmium	0.4	mg/kg	0.5	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	10	23	9.1	31
Copper	5	mg/kg	16	< 5	12	56
Lead	5	mg/kg	30	5.7	6.8	6.7
Mercury	0.05	mg/kg	0.06	< 0.05	0.05	< 0.05
Nickel	5	mg/kg	12	7.6	7.9	62
Zinc	5	mg/kg	42	7.3	15	39
% Moisture	0.1	%	18	13	15	16

Client Sample ID Sample Matrix Eurofins mgt Sample No.			TP4_1.4-1.5 Soil S13-Ap13620	TP5_0.0-0.1 Soil S13-Ap13621	QC1 Soil S13-Ap13623
Date Sampled			Apr 16, 2013	Apr 16, 2013	Apr 16, 2013
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999	NEPM Fractions				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	57	< 50
TRH C29-C36	50	mg/kg	< 50	54	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	110	< 50
ВТЕХ					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3

Client Sample ID			TP4_1.4-1.5	TP5_0.0-0.1	QC1
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			S13-Ap13620	S13-Ap13621	S13-Ap13623
Date Sampled	•		Apr 16, 2013	Apr 16, 2013	Apr 16, 2013
Test/Reference	LOR	Unit		, , , ,	
BTEX	LOIK	OTIL			
4-Bromofluorobenzene (surr.)	1	%	91	94	92
Total Recoverable Hydrocarbons - Draft 2010 NE			0.	1	02
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
•			< 100		
TRH >C16-C34	100	mg/kg		< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
Polyaromatic Hydrocarbons (PAH)	0.5	m c://:-::	.05	.05	. 0.5
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	< 1	< 1
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Total PAH	1	mg/kg	< 1	< 1	< 1
2-Fluorobiphenyl (surr.)	1	%	104	109	103
p-Terphenyl-d14 (surr.)	1	%	85	89	83
Heavy Metals					
Arsenic	2	mg/kg	3.8	4.9	2.5
Cadmium	0.4	mg/kg	0.4	< 0.4	< 0.4
Chromium	5	mg/kg	56	18	26
Copper	5	mg/kg	< 5	18	44
Lead	5	mg/kg	6.5	15	10
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	28	27	44
Zinc	5	mg/kg	21	35	66
% Moisture	0.1	%	16	13	21

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Apr 19, 2013	14 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
Total Recoverable Hydrocarbons - Draft 2010 NEPM Fractions	Sydney	Apr 19, 2013	14 Day
- Method: LM-LTM-ORG2010			
BTEX	Sydney	Apr 18, 2013	14 Day
- Method: E029/E016 BTEX			
Polychlorinated Biphenyls (PCB)	Sydney	Apr 19, 2013	14 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Organochlorine Pesticides (OC)	Sydney	Apr 19, 2013	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polyaromatic Hydrocarbons (PAH)	Sydney	Apr 19, 2013	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Metals M8	Sydney	Apr 18, 2013	28 Day
- Method: E022 Acid Extractable metals in Soils & E026 Mercury			
% Moisture	Sydney	Apr 18, 2013	28 Day
A CONTRACTOR OF THE CONTRACTOR			

⁻ Method: E005 Moisture Content

Report Number: 376070-S

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

Due:

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook NSW 2304

Client Job No.:

BELLARD HEIGHTS ENAUWARA04363AA

Order No.: Report #:

376070

Phone: 02 4016 2300 Fax: 02 4016 2380

% I Z B 7 0 7 H

Contact Name: Damien Hendrickx

5 Day

Eurofins | mgt Client Manager: Jean Heng

Apr 26, 2013

Apr 18, 2013 9:30 AM

		Sample Detail			% Moisture	<u></u>	Metals M8	зтех	olychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	olyaromatic Hydrocarbons (PAH)	otal Recoverable Hydrocarbons
Laboratory wh	ere analysis is co	onducted										
Melbourne Lab	oratory - NATA S	Site # 1254 & 14	1271									
	atory - NATA Site				Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Labo	ratory - NATA Si	te # 20794										
External Labor	atory											
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
DS1	Apr 15, 2013		Soil	S13-Ap13600	Х		Х	Х			Х	Х
DS2	Apr 15, 2013		Soil	S13-Ap13601	Х		Х	Х			Х	Х
CS1	Apr 15, 2013		Soil	S13-Ap13602		Х						
SS1	Apr 16, 2013		Soil	S13-Ap13603	Х		Х	Х			Х	Х
SS2	Apr 16, 2013		Soil	S13-Ap13604	Х		Х	Х			Х	Х
SS3	Apr 16, 2013		Soil	S13-Ap13605	Х		Х	Х			Х	Х
TP1_0.0-0.1	Apr 16, 2013		Soil	S13-Ap13606	Х		Х	Х	Х	Χ	Х	Х
TP1_0.4-0.5	Apr 16, 2013		Soil	S13-Ap13607		Х						
TP1_0.9-1.0	Apr 16, 2013		Soil	S13-Ap13608		Х						
TP1_1.9-2.0	Apr 16, 2013		Soil	S13-Ap13609		Х						

Date Reported: Apr 24, 2013 Date Reported: Apr 24, 2013 Report Number: 376070-S

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook

NSW 2304

Client Job No.: BELLARD HEIGHTS ENAUWARA04363AA Order No.: Report #:

Phone:

Fax:

376070

02 4016 2300 02 4016 2380

Contact Name:

Received:

Priority:

Due:

Damien Hendrickx

Apr 26, 2013

5 Day

Apr 18, 2013 9:30 AM

Eurofins | mgt Client Manager: Jean Heng

		Sample Detail			% Moisture	НОГД	Metals M8	ВТЕХ	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laboratory wh	nere analysis is c	onducted										
Melbourne La	boratory - NATA	Site # 1254 & 14	271									
Sydney Labor	atory - NATA Site	# 18217			Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Labo	oratory - NATA Si	te # 20794										
External Labo	ratory											
TP1_2.9-3.0	Apr 16, 2013		Soil	S13-Ap13610		Х						
TP1_3.9-4.0	Apr 16, 2013		Soil	S13-Ap13611		Х						
TP2_0.0-0.1	Apr 16, 2013		Soil	S13-Ap13612	Х		Х	Х			Х	Х
TP2_0.4-0.5	Apr 16, 2013		Soil	S13-Ap13613		Х						
TP2_0.9-1.0	Apr 16, 2013		Soil	S13-Ap13614	Х		Х	Х			Х	Х
TP2_2.2-2.3	Apr 16, 2013		Soil	S13-Ap13615		Х						
TP3_0.0-0.1	Apr 16, 2013		Soil	S13-Ap13616	Х		Χ	Х			Х	Х
TP3_0.9-1.0	Apr 16, 2013		Soil	S13-Ap13617	Х		Χ	Х			Х	Х
TP4_0.0-0.1	Apr 16, 2013		Soil	S13-Ap13618	Х		Х	Х			Х	Х
TP4_0.4-0.5	Apr 16, 2013		Soil	S13-Ap13619	Х		Х	Х			Х	Х
TP4_1.4-1.5	Apr 16, 2013		Soil	S13-Ap13620	Х		Х	Х			Х	Х

Date Reported: Apr 24, 2013 Date Reported: Apr 24, 2013 Report Number: 376070-S

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Received:

Priority:

Due:

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook

NSW 2304

Client Job No.: BELLARD HEIGHTS ENAUWARA04363AA Order No.:

Report #: 376070 Phone: 02 4016 2300

Contact Name: Fax: 02 4016 2380 Damien Hendrickx

Eurofins | mgt Client Manager: Jean Heng

Apr 26, 2013

5 Day

Apr 18, 2013 9:30 AM

		Sample Detail			% Moisture	HOLD	Metals M8	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
	ere analysis is c											
	oratory - NATA		271									
	tory - NATA Site				X	Х	Х	Х	Х	Х	Х	Х
	ratory - NATA Si	te # 20794										
External Labor			ı									
TP5_0.0-0.1	Apr 16, 2013		Soil	S13-Ap13621	X		Х	Х			Х	Х
TP5_0.4-0.5	Apr 16, 2013		Soil	S13-Ap13622		Х						
QC1	Apr 16, 2013		Soil	S13-Ap13623	Х		Х	Х			Х	Х
TS130415-1	Apr 15, 2013		Soil	S13-Ap13685		Х						
TB130415-1	Apr 15, 2013		Soil	S13-Ap13686		Х						
TSLAB130415- 1	Apr 15, 2013		Soil	S13-Ap13687		Х						

Date Reported: Apr 24, 2013 Date Reported: Apr 24, 2013 Report Number: 376070-S

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram mg/l: milligrams per litre
ug/l: micrograms per litre ppm: Parts per million
ppb: Parts per billion %: Percentage
ora/100ml: Organisms per 100 millilitres NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 376070-S

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					0000
Total Recoverable Hydrocarbons - 1999 NEPM Fractions Petroleum Hydrocarbons (TPH)	E004				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX E029/E016 BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - Draft 2010 NEPM Frac LTM-ORG2010	ctions LM-				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH C6-C10 less BTEX (F1)	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Polychlorinated Biphenyls (PCB) E013 Polychlorinated E (PCB)	Biphenyls				
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides (OC) E013 Organochlorine Pe	esticides (OC)				
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.2	0.2	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
a-Chlordane	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
g-Chlordane	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	

11186				_	1
Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Polyaromatic Hydrocarbons (PAH) E007 Polyaromatic (PAH)	Hydrocarbons				
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	mg/kg	< 1	1	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	ı mg/ng	10.0		1 400	
Metals M8 E022 Acid Extractable metals in Soils & E02	6 Mercury			П	
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
		< 0.05	0.05	Pass	
Mercury	mg/kg	 			
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fraction Petroleum Hydrocarbons (TPH)	ns E004				
TRH C6-C9	0/	07	70.420	Door	
TRH C10-C14	%	87	70-130	Pass	
	%	85	70-130	Pass	
LCS - % Recovery					
BTEX E029/E016 BTEX	0/	00	70.400	D	
Benzene	%	93	70-130	Pass	
Toluene	%	96	70-130	Pass	
Ethylbenzene	%	97	70-130	Pass	
m&p-Xylenes	%	96	70-130	Pass	
o-Xylene	%	97	70-130	Pass	
Xylenes - Total	%	96	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - Draft 2010 NEPM Fr LTM-ORG2010					
Naphthalene	%	95	70-130	Pass	
TRH C6-C10	%	94	70-130	Pass	
TRH >C10-C16	%	91	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls (PCB) E013 Polychlorinated (PCB)	Biphenyls				
Aroclor-1260	%	120	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides (OC) E013 Organochlorine	Pesticides (OC)				
4.4'-DDD	%	111	70-130	Pass	

Test	11180		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
4.4'-DDE			%	116		70-130	Pass	
4.4'-DDT			%	116		70-130	Pass	
a-BHC			%	113		70-130	Pass	
a-Chlordane			%	117		70-130	Pass	
Aldrin			%	125		70-130	Pass	
b-BHC			%	111		70-130	Pass	
d-BHC			%	114		70-130	Pass	
Dieldrin			%	121		70-130	Pass	
Endosulfan I			%	123		70-130	Pass	
Endosulfan II			%	126		70-130	Pass	
Endosulfan sulphate			%	97		70-130	Pass	
Endrin			%	117		70-130	Pass	
Endrin aldehyde			%	116		70-130	Pass	
Endrin ketone			%	117		70-130	Pass	
			%	117				
g-BHC (Lindane)						70-130	Pass	
g-Chlordane			%	121		70-130	Pass	
Heptachlor			%	120		70-130	Pass	
Heptachlor epoxide			%	123		70-130	Pass	
Hexachlorobenzene			%	93	 	70-130	Pass	
Methoxychlor			%	113		70-130	Pass	
LCS - % Recovery								
Polyaromatic Hydrocarbons (PAH) (PAH)	E007 Polyaromat	ic Hydro	ı					
Acenaphthene			%	95		70-130	Pass	
Acenaphthylene			%	89		70-130	Pass	
Anthracene			%	93		70-130	Pass	
Benz(a)anthracene			%	89		70-130	Pass	
Benzo(a)pyrene			%	89		70-130	Pass	
Benzo(b)fluoranthene & Benzo(k)fluo	oranthene		%	90		70-130	Pass	
Benzo(g.h.i)perylene			%	90		70-130	Pass	
Chrysene			%	97		70-130	Pass	
Dibenz(a.h)anthracene			%	86		70-130	Pass	
Fluoranthene			%	89		70-130	Pass	
Fluorene			%	91		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	88		70-130	Pass	
Naphthalene			%	95		70-130	Pass	
Phenanthrene			%	88		70-130	Pass	
Pyrene			%	90		70-130	Pass	
LCS - % Recovery			/0	, 30		70-100	1 433	
Metals M8 E022 Acid Extractable m	etals in Soile & E	026 Marc	urv					
Arsenic	ictais iii oolis & E	SEC INICIO	%	83		70-130	Pass	
Cadmium			%	88		70-130	Pass	
Conner			%	93		70-130	Pass	
Copper			%	105	 	70-130	Pass	
Lead			%	96	 	70-130	Pass	
Mercury			%	102	 	70-130	Pass	
Nickel			%	97	 	70-130	Pass	
Zinc			%	101		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery	1000 NEDM 5	ione		Populs 4				
	1999 NEPM Fract	ions		Result 1		 		
Total Recoverable Hydrocarbons -	040 4- 40000	0.5	٠,	I 70				
TRH C6-C9 TRH C10-C14	S13-Ap13600 S13-Ap13600	CP CP	% %	79 85		70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA	Units	Result 1	Acceptance		Qualifying
		Source	00		Limits	Limits	Code
BTEX	040 4 - 40000	0.0	0/	Result 1	70.400	D	
Benzene	S13-Ap13600	CP	%	84	70-130	Pass	
Toluene	S13-Ap13600	CP	%	87	70-130	Pass	
Ethylbenzene	S13-Ap13600	CP	%	88	70-130	Pass	
m&p-Xylenes	S13-Ap13600	CP	%	88	70-130	Pass	
o-Xylene	S13-Ap13600	CP	%	88	70-130	Pass	
Xylenes - Total	S13-Ap13600	CP	%	88	70-130	Pass	
Spike - % Recovery	D (I 5 1/4 I		T	
Total Recoverable Hydrocarbons				Result 1		_	
Naphthalene	S13-Ap13600	CP	%	81	70-130	Pass	
TRH C6-C10	S13-Ap13600	CP	%	88	70-130	Pass	
TRH >C10-C16	S13-Ap13600	CP	%	94	70-130	Pass	
Spike - % Recovery	-			T T			
Polyaromatic Hydrocarbons (PAF	ή	1		Result 1			
Acenaphthene	S13-Ap13600	CP	%	108	70-130	Pass	
Acenaphthylene	S13-Ap13600	CP	%	108	70-130	Pass	
Anthracene	S13-Ap13600	CP	%	104	70-130	Pass	
Benz(a)anthracene	S13-Ap13600	CP	%	105	70-130	Pass	
Benzo(a)pyrene	S13-Ap13600	CP	%	105	70-130	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	S13-Ap13600	СР	%	106	70-130	Pass	
Benzo(g.h.i)perylene	S13-Ap13600	CP	%	107	70-130	Pass	
Chrysene	S13-Ap13600	CP	%	108	70-130	Pass	
Dibenz(a.h)anthracene	S13-Ap13600	CP	%	102	70-130	Pass	
Fluoranthene	S13-Ap13600	CP	%	108	70-130	Pass	
Fluorene	S13-Ap13600	CP	%	108	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S13-Ap13600	CP	%	105	70-130	Pass	
Naphthalene	S13-Ap13600	СР	%	110	70-130	Pass	
Phenanthrene	S13-Ap13600	СР	%	103	70-130	Pass	
Pyrene	S13-Ap13600	СР	%	106	70-130	Pass	
Spike - % Recovery							
Metals M8				Result 1			
Arsenic	S13-Ap13600	СР	%	88	70-130	Pass	
Cadmium	S13-Ap13600	СР	%	95	70-130	Pass	
Chromium	S13-Ap13600	СР	%	109	70-130	Pass	
Copper	S13-Ap13600	СР	%	105	70-130	Pass	
Lead	S13-Ap13600	СР	%	112	70-130	Pass	
Mercury	S13-Ap13600	СР	%	97	70-130	Pass	
Nickel	S13-Ap13600	СР	%	94	70-130	Pass	
Zinc	S13-Ap13600	CP	%	89	70-130	Pass	
Spike - % Recovery							
Polychlorinated Biphenyls (PCB)				Result 1			
Aroclor-1260	S13-Ap11577	NCP	%	114	70-130	Pass	
Spike - % Recovery	1 0.07(017				1 70 100	. 455	
Organochlorine Pesticides (OC)				Result 1			
4.4'-DDD	S13-Ap11577	NCP	%	110	70-130	Pass	
4.4'-DDE	S13-Ap11577	NCP	%	123	70-130	Pass	
4.4'-DDT	S13-Ap11577	NCP	%	103	70-130	Pass	
a-BHC	S13-Ap11577	NCP	%	118	70-130	Pass	
a-Chlordane	S13-Ap11577	NCP	%	108	70-130	Pass	
Aldrin		NCP	%	118	70-130	Pass	
b-BHC	S13-Ap11577		i				
d-BHC	S13-Ap11577	NCP	%	117	70-130	Pass	
	S13-Ap11577	NCP	%	115	70-130	Pass	
Dieldrin	S13-Ap11577	NCP	%	115	70-130	Pass	
Endosulfan I	S13-Ap11577	NCP	%	119	70-130	Pass	

	11186						
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan II	S13-Ap11577	NCP	%	116	70-130	Pass	
Endosulfan sulphate	S13-Ap11577	NCP	%	100	70-130	Pass	
Endrin	S13-Ap11577	NCP	%	109	70-130	Pass	
Endrin aldehyde	S13-Ap11577	NCP	%	108	70-130	Pass	
Endrin ketone	S13-Ap11577	NCP	%	107	70-130	Pass	
g-BHC (Lindane)	S13-Ap11577	NCP	%	109	70-130	Pass	
g-Chlordane	S13-Ap11577	NCP	%	110	70-130	Pass	
Heptachlor	S13-Ap11577	NCP	%	113	70-130	Pass	
Heptachlor epoxide	S13-Ap11577	NCP	%	117	70-130	Pass	
Hexachlorobenzene	S13-Ap11577	NCP	%	106	70-130	Pass	
Methoxychlor	S13-Ap11577	NCP	%	107	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S13-Ap13618	СР	%	91	70-130	Pass	
TRH C10-C14	S13-Ap13618	СР	%	112	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S13-Ap13618	СР	%	85	70-130	Pass	
Toluene	S13-Ap13618	СР	%	88	70-130	Pass	
Ethylbenzene	S13-Ap13618	CP	%	90	70-130	Pass	
m&p-Xylenes	S13-Ap13618	CP	%	90	70-130	Pass	
o-Xylene	S13-Ap13618	CP	%	90	70-130	Pass	
Xylenes - Total	S13-Ap13618	CP	%	90	70-130	Pass	
Spike - % Recovery		Oi	70		70 130	1 433	
Total Recoverable Hydrocarbo	ns - Draft 2010 NEDM	Eraction		Result 1			
Naphthalene	S13-Ap13618	CP	%	97	70-130	Pass	
<u> </u>		CP					
TRH C6-C10 TRH >C10-C16	S13-Ap13618	CP	%	92	70-130	Pass	
	S13-Ap13618	CP	%	121	70-130	Pass	
Spike - % Recovery	A11\			Decut 4			
Polyaromatic Hydrocarbons (P		CD.	0/	Result 1	70.400	Dana	
Acenaphthene	S13-Ap13618	CP	%	100	70-130	Pass	
Acenaphthylene	S13-Ap13618	CP	%	102	70-130	Pass	
Anthracene	S13-Ap13618	CP	%	89	70-130	Pass	
Benz(a)anthracene	S13-Ap13618	CP	%	110	70-130	Pass	
Benzo(a)pyrene	S13-Ap13618	CP	%	85	70-130	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	S13-Ap13618	СР	%	101	70-130	Pass	
Benzo(g.h.i)perylene	S13-Ap13618	CP	%	75	70-130	Pass	
Chrysene	S13-Ap13618	CP	%	115	70-130	Pass	
Dibenz(a.h)anthracene	S13-Ap13618	CP	%	82	70-130	Pass	
Fluoranthene	S13-Ap13618	CP	%	106	70-130	Pass	
Fluorene	S13-Ap13618	CP	%	101	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S13-Ap13618	CP	%	76	70-130	Pass	
, , , , , , , , , , , , , , , , , , ,	<u> </u>	CP	%	112	70-130	Pass	
Naphthalene	S13-Ap13618						
Phenanthrene	S13-Ap13618	CP	%	105	70-130	Pass	
Pyrene	S13-Ap13618	СР	%	117	70-130	Pass	
Spike - % Recovery				<u> </u>			
Metals M8	0.0.4		~.	Result 1	70 10-		
Arsenic	S13-Ap13618	CP	%	77	70-130	Pass	
Cadmium	S13-Ap13618	CP	%	101	70-130	Pass	
Chromium	S13-Ap13618	CP	%	94	70-130	Pass	
Copper	S13-Ap13618	CP	%	115	70-130	Pass	
Lead	S13-Ap13618	CP	%	93	70-130	Pass	
Mercury	S13-Ap13618	CP	%	98	70-130	Pass	
Nickel	S13-Ap13618	CP	%	105	70-130	Pass	

	Illgt			T			1	T	T
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Zinc	S13-Ap13618	CP	%	108			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S13-Ap13600	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S13-Ap13600	CP	mg/kg	21	24	14	30%	Pass	
TRH C15-C28	S13-Ap13600	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S13-Ap13600	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate							1		
BTEX				Result 1	Result 2	RPD			
Benzene	S13-Ap13600	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S13-Ap13600	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S13-Ap13600	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S13-Ap13600	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S13-Ap13600	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S13-Ap13600	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- Draft 2010 NEPM	Fraction	s	Result 1	Result 2	RPD			
Naphthalene	S13-Ap13600	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S13-Ap13600	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Ap13600	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S13-Ap13600	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S13-Ap13600	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S13-Ap13600	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polyaromatic Hydrocarbons (PAI	H)			Result 1	Result 2	RPD			
Acenaphthene	S13-Ap13600	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S13-Ap13600	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S13-Ap13600	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S13-Ap13600	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S13-Ap13600	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	S13-Ap13600	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-Ap13600	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S13-Ap13600	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-Ap13600	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S13-Ap13600	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S13-Ap13600	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-Ap13600	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S13-Ap13600	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S13-Ap13600	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S13-Ap13600	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate							•		
Metals M8				Result 1	Result 2	RPD			
	S13-Ap13600	СР	mg/kg	5.3	2.3	78	30%	Fail	Q15
Arsenic	01071p10000	t			< 0.4	<1	30%	Pass	
Arsenic Cadmium	S13-Ap13600	CP	mg/kg	< 0.4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0070		
	S13-Ap13600	CP CP		15			30%	Fail	Q15
Cadmium Chromium	S13-Ap13600 S13-Ap13600	+	mg/kg		8.7	52		Fail	Q15
Cadmium Chromium Copper	S13-Ap13600 S13-Ap13600 S13-Ap13600	СР	mg/kg mg/kg	15 6.3	8.7 < 5	52 28	30% 30%	Fail Pass	
Cadmium Chromium Copper Lead	\$13-Ap13600 \$13-Ap13600 \$13-Ap13600 \$13-Ap13600	CP CP	mg/kg mg/kg mg/kg	15 6.3 16	8.7 < 5 11	52 28 34	30% 30% 30%	Fail Pass Fail	Q15 Q15
Cadmium Chromium Copper	S13-Ap13600 S13-Ap13600 S13-Ap13600	CP CP	mg/kg mg/kg	15 6.3	8.7 < 5	52 28	30% 30%	Fail Pass	

Polychlorinated Biphenyls (PCB) Aroclor-1016 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Duplicate Organochlorine Pesticides (OC)	S13-Ap11577 S13-Ap11577 S13-Ap11577 S13-Ap11577 S13-Ap11577	NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 0.5 < 0.5 < 0.5	Result 2 < 0.5 < 0.5	RPD <1 <1	30%	Pass	
Aroclor-1016 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Duplicate	S13-Ap11577 S13-Ap11577 S13-Ap11577 S13-Ap11577	NCP NCP NCP	mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1			
Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Duplicate	S13-Ap11577 S13-Ap11577 S13-Ap11577 S13-Ap11577	NCP NCP NCP	mg/kg mg/kg mg/kg	< 0.5 < 0.5	< 0.5				
Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Duplicate	\$13-Ap11577 \$13-Ap11577 \$13-Ap11577	NCP NCP NCP	mg/kg mg/kg	< 0.5		<1	30%	_	
Aroclor-1248 Aroclor-1254 Aroclor-1260 Duplicate	S13-Ap11577 S13-Ap11577	NCP NCP	mg/kg				JU /0	Pass	
Aroclor-1254 Aroclor-1260 Duplicate	S13-Ap11577	NCP		۰ -	< 0.5	<1	30%	Pass	
Aroclor-1260 Duplicate			mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	S13-Ap11577	NCP		< 0.5	< 0.5	<1	30%	Pass	
•			mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Organochlorine Pesticides (OC)									
organicamic recticiade (00)				Result 1	Result 2	RPD			
4.4'-DDD	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S13-Ap11577	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
a-BHC	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-Chlordane	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-Chlordane	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S13-Ap11577	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S13-Ap11577	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S13-Ap13618	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S13-Ap13618	CP	mg/kg	38	37	3.0	30%	Pass	
TRH C15-C28	S13-Ap13618	СР	mg/kg	260	270	2.0	30%	Pass	
TRH C29-C36	S13-Ap13618	СР	mg/kg	160	170	5.0	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S13-Ap13618	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S13-Ap13618	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S13-Ap13618	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S13-Ap13618	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S13-Ap13618	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S13-Ap13618	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	Draft 2010 NEPM	Fraction	s	Result 1	Result 2	RPD			
Naphthalene	S13-Ap13618	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S13-Ap13618	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-Ap13618	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S13-Ap13618	CP	mg/kg	54	54	<1	30%	Pass	
TRH >C16-C34	S13-Ap13618	CP	mg/kg	390	410	4.0	30%	Pass	
TRH >C34-C40	S13-Ap13618	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polyaromatic Hydrocarbons (PAH))	· · · · · · · · · · · · · · · · · · ·		Result 1	Result 2	RPD			
Acenaphthene	S13-Ap13618	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

	8								
Duplicate									
Polyaromatic Hydrocarbons (I	PAH)			Result 1	Result 2	RPD			
Acenaphthylene	S13-Ap13618	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S13-Ap13618	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S13-Ap13618	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S13-Ap13618	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	S13-Ap13618	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-Ap13618	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S13-Ap13618	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-Ap13618	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S13-Ap13618	CP	mg/kg	0.6	0.7	6.0	30%	Pass	
Fluorene	S13-Ap13618	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-Ap13618	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S13-Ap13618	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S13-Ap13618	CP	mg/kg	1.2	1.1	5.0	30%	Pass	
Pyrene	S13-Ap13618	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Metals M8				Result 1	Result 2	RPD			
Arsenic	S13-Ap13618	CP	mg/kg	5.4	5.6	3.0	30%	Pass	
Cadmium	S13-Ap13618	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S13-Ap13618	CP	mg/kg	9.1	10	13	30%	Pass	
Copper	S13-Ap13618	CP	mg/kg	12	14	13	30%	Pass	
Lead	S13-Ap13618	CP	mg/kg	6.8	7.5	9.0	30%	Pass	
Mercury	S13-Ap13618	CP	mg/kg	0.05	0.05	3.0	30%	Pass	
Nickel	S13-Ap13618	CP	mg/kg	7.9	9.7	20	30%	Pass	
Zinc	S13-Ap13618	СР	mg/kg	15	17	10	30%	Pass	

Comments

Sample Integrity

N/A
Yes
Yes
Yes
Yes
Yes
No

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
Q15	The RPD reported passes Eurofins mgt's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

Authorised By

Jean Heng Client Services

 Laura Schofield
 Senior Analyst-Volatile (NSW)

 Ryan Hamilton
 Senior Analyst-Organic (NSW)

 James Norford
 Senior Analyst-Metal (NSW)

Dr. Bob Symons

Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 376070-S

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304

Attention: Damien Hendrickx

Report 376581-S

Client Reference BELLBIRD HEIGHTS ENAUWARA04363AA

Received Date Apr 23, 2013

NATA WORLD RECOGNISED ACCREDITATION

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	TP1-0.0-0.1 Soil S13-Ap17985 Apr 16, 2013	TP2-0.0-0.1 Soil S13-Ap17990 Apr 16, 2013	TP2-0.9-1.0 Soil S13-Ap17992 Apr 16, 2013	TP3-0.0-0.1 Soil S13-Ap17994 Apr 16, 2013
pH (1:5 Aqueous extract)	0.1	units	4.1	3.4	4.3	4.2
% Moisture	0.1	%	13	5.9	15	14
Asbestos			see attached	see attached	-	see attached

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	TP3-0.9-1.0 Soil S13-Ap17995 Apr 16, 2013	TP4-0.0-0.1 Soil S13-Ap17996 Apr 16, 2013	TP4-0.4-0.5 Soil S13-Ap17997 Apr 16, 2013	TP4-1.4-1.5 Soil S13-Ap17998 Apr 16, 2013
Test/Neierenee	LOIK	Offic				
pH (1:5 Aqueous extract)	0.1	units	3.4	3.5	3.5	4.0
% Moisture	0.1	%	13	12	11	16
Asbestos			-	see attached	-	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	TP5-0.0-0.1 Soil S13-Ap17999 Apr 16, 2013	SS1 Soil S13-Ap18001 Apr 16, 2013	SS2 Soil S13-Ap18002 Apr 16, 2013	SS3 Soil S13-Ap18003 Apr 16, 2013
pH (1:5 Aqueous extract)	0.1	units	3.6	-	-	-
% Moisture	0.1	%	10	-	-	-
Asbestos			see attached	see attached	see attached	see attached

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

Description	Testing Site	Extracted	Holding Time
pH (1:5 Aqueous extract)	Sydney	Apr 24, 2013	7 Day
- Method: E018 pH			
% Moisture	Sydney	Apr 23, 2013	28 Day

- Method: E005 Moisture Content

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

Order No.:

Report #:

Phone:

Fax:

376581

02 4016 2300

02 4016 2380

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook

NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA Client Job No.:

Received: Apr 23, 2013 1:33 PM

Due: May 1, 2013 Priority: 5 Day

Contact Name: Damien Hendrickx

Eurofins | mgt Client Manager: Jean Heng

Sample Detail Laboratory where analysis is conducted						Asbestos	HOLD	pH (1:5 Aqueous extract)
	•							
	boratory - NATA S		4271					
	atory - NATA Site				X		Х	Х
	oratory - NATA Sit	te # 20794						
External Labo			ı			Х		
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
TP1-0.0-0.1	Apr 16, 2013		Soil	S13-Ap17985	Х	Х		Х
TP1-0.4-0.5	Apr 16, 2013		Soil	S13-Ap17986			Х	
TP1-1.9-2.0	Apr 16, 2013		Soil	S13-Ap17987			Х	
TP1-2.9-3.0	Apr 16, 2013		Soil	S13-Ap17988			Х	
TP1-3.9-4.0	Apr 16, 2013		Soil	S13-Ap17989			Х	
TP2-0.0-0.1	Apr 16, 2013		Soil	S13-Ap17990	X	Х		Х
TP2-0.4-0.5	Apr 16, 2013		Soil	S13-Ap17991			Х	
TP2-0.9-1.0	Apr 16, 2013		Soil	S13-Ap17992	Х			Х
TP2-2.2-2.3	Apr 16, 2013		Soil	S13-Ap17993			Х	
TP3-0.0-0.1	Apr 16, 2013		Soil	S13-Ap17994	X	Х		Х

Date Reported: Apr 29, 2013 Date Reported: Apr 29, 2013 Report Number: 376581-S

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Melbourne

Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

Report #:

Phone:

Fax:

376581

02 4016 2300

02 4016 2380

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook

NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA Client Job No.:

Order No.: Received: Apr 23, 2013 1:33 PM

> Due: May 1, 2013 Priority: 5 Day

Contact Name: Damien Hendrickx

Eurofins | mgt Client Manager: Jean Heng

		Sample Detail			% Moisture	Asbestos	HOLD	pH (1:5 Aqueous extract)
Laboratory w	here analysis is c	onducted						
Melbourne La	aboratory - NATA	Site # 1254 & 14	271					
Sydney Labor	ratory - NATA Site	# 18217			X		Х	Х
Brisbane Lab	oratory - NATA Si	te # 20794						
External Labo	oratory	T	ı			Х		
TP3-0.9-1.0	Apr 16, 2013		Soil	S13-Ap17995	X			Х
TP4-0.0-0.1	Apr 16, 2013		Soil	S13-Ap17996	X	Х		Х
TP4-0.4-0.5	Apr 16, 2013		Soil	S13-Ap17997	X			Х
TP4-1.4-1.5	Apr 16, 2013		Soil	S13-Ap17998	X			Х
TP5-0.0-0.1	Apr 16, 2013		Soil	S13-Ap17999	X	Х		Х
TP5-0.4-0.5	Apr 16, 2013		Soil	S13-Ap18000			Х	
SS1	Apr 16, 2013		Soil	S13-Ap18001		Х		
SS2	Apr 16, 2013		Soil	S13-Ap18002		Х		
SS3	Apr 16, 2013		Soil	S13-Ap18003		Х		
TP1-0.9-1.0	Apr 16, 2013		Soil	S13-Ap18199			Х	
CS1	Apr 15, 2013		Soil	S13-Ap18200			Х	

Page 4 of 8

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA Client Job No.:

Order No.:

Report #: 376581 Phone: 02 4016 2300

Fax: 02 4016 2380 Received: Apr 23, 2013 1:33 PM

Due: May 1, 2013 Priority: 5 Day

Contact Name: Damien Hendrickx

Eurofins | mgt Client Manager: Jean Heng

		Sample Detail			% Moisture	Asbestos	ногр	pH (1:5 Aqueous extract)
Laboratory whe	ere analysis is co	onducted						
Melbourne Lab	oratory - NATA S	Site # 1254 & 142	271					
Sydney Labora	tory - NATA Site	# 18217			Χ		Х	Х
Brisbane Labor	atory - NATA Si	te # 20794						
External Labora	atory					Х		
DS1	Apr 15, 2013		Soil	S13-Ap18201			Х	
DS2	Apr 15, 2013		Soil	S13-Ap18202			Χ	

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram mg/l: milligrams per litre
ug/l: micrograms per litre ppm: Parts per million
ppb: Parts per billion %: Percentage
ora/100ml: Organisms per 100 millilitres NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Comments

Please note: Asbestos analysed by ASET (Job: ASET33082/36262/1-8) NATA Accreditation: 14484

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Jean Heng Client Services

Bob Symons Senior Analyst-Inorganic (NSW)

Dr. Bob Symons

Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins, Imglishall not be liable for loss, coss, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins, Imglish liable for consequential claiming to lice profits, damages for refailure to meet decidines and lots for production arising from this report. This document shall not be reproduced except in full and reflects only to the times tested. Unless indicated otherwise, the tests were performed on the samples as reported.

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304

Attention: Damien Hendrickx

Report 377797-S

Client Reference BELLBIRD HEIGHTS ENAUWARA04363AA

Received Date May 03, 2013

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix Eurofins mgt Sample No.			TP6_0.0-0.1 Soil S13-My03367	TP6_0.4-0.5 Soil S13-My03368	TP7_0.0-0.1 Soil S13-My03370	TP7_0.4-0.5 Soil S13-My03371
Date Sampled Test/Reference	LOR	Unit	May 01, 2013	May 01, 2013	May 01, 2013	May 01, 2013
Test/Reference	LOR	Unit				
pH (1:5 Aqueous extract)	0.1	units	4.1	3.7	4.0	3.8
% Moisture	0.1	%	12	15	13	14
Heavy Metals						
Arsenic	2	mg/kg	3.9	6.8	4.9	5.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	9.6	38	23	11
Copper	5	mg/kg	8.1	5.5	< 5	15
Lead	5	mg/kg	19	12	7.2	7.7
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	10	12	23	7.2
Zinc	5	mg/kg	16	23	21	18

Client Sample ID Sample Matrix Eurofins mgt Sample No.			TP8_0.0-0.1 Soil S13-My03373	TP9_0.0-0.1 Soil S13-My03376	TP9_0.5-0.6 Soil S13-My03377	TP10_0.0-0.1 Soil S13-My03378
Date Sampled			May 01, 2013	May 01, 2013	May 01, 2013	May 01, 2013
Test/Reference	LOR	Unit				
pH (1:5 Aqueous extract)	0.1	units	3.5	3.7	3.8	4.9
% Moisture	0.1	%	8.4	11	14	18
Heavy Metals						
Arsenic	2	mg/kg	< 2	4.1	3.0	3.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	7.1	22	21	22
Copper	5	mg/kg	8.7	20	< 5	8.3
Lead	5	mg/kg	10	11	5.4	13
Mercury	0.05	mg/kg	0.06	0.05	< 0.05	< 0.05
Nickel	5	mg/kg	< 5	12	42	16
Zinc	5	mg/kg	18	25	24	39

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TP11_0.0-0.1 Soil S13-My03380 May 01, 2013	TP12_0.0-0.1 Soil S13-My03382 May 01, 2013	TP13_0.0-0.1 Soil S13-My03384 May 01, 2013	TP14_0.0-0.1 Soil S13-My03386 May 01, 2013
Test/Reference	LOR	Unit				
pH (1:5 Aqueous extract) % Moisture Heavy Metals	0.1	units %	7.3 18	6.6 15	5.7 9.1	5.5 10
Arsenic	2	mg/kg	5.4	< 2	2.7	< 2
Cadmium	0.4	mg/kg	0.6	1.3	< 0.4	< 0.4
Chromium	5	mg/kg	25	7.9	15	13
Copper	5	mg/kg	18	18	5.0	< 5
Lead	5	mg/kg	77	35	15	7.6
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	12	7.4	6.1	< 5
Zinc	5	mg/kg	160	98	60	7.6

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TP15_0.0-0.1 Soil S13-My03388 May 01, 2013	SS4 Soil S13-My03390 May 01, 2013	SS5 Soil S13-My03391 May 01, 2013	SS6 Soil S13-My03392 May 01, 2013
Test/Reference	LOR	Unit				
pH (1:5 Aqueous extract) % Moisture	0.1 0.1	units	5.9 12	4.4	3.7	3.6 5.0
Heavy Metals Arsenic	2	mg/kg	2.4	< 2	4.2	4.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	16	11	9.3	14
Copper	5	mg/kg	< 5	12	7.3	17
Lead	5	mg/kg	9.1	16	22	< 5
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	10	11	33	19
Zinc	5	mg/kg	14	18	60	27

Client Sample ID Sample Matrix			SS7 Soil	SS8 Soil	SS9 Soil	SS10 Soil
Eurofins mgt Sample No.			S13-My03393	S13-My03394	S13-My03395	S13-My03396
Date Sampled			May 01, 2013	May 01, 2013	May 01, 2013	May 01, 2013
Test/Reference	LOR	Unit				
pH (1:5 Aqueous extract)	0.1	units	5.2	5.0	5.7	6.9
% Moisture	0.1	%	9.7	9.5	7.6	13
Heavy Metals						
Arsenic	2	mg/kg	3.8	2.4	4.8	2.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	1.0	5.9

Client Sample ID Sample Matrix			SS7 Soil	SS8 Soil	SS9 Soil	SS10 Soil
Eurofins mgt Sample No.			S13-My03393	S13-My03394	S13-My03395	S13-My03396
Date Sampled			May 01, 2013	May 01, 2013	May 01, 2013	May 01, 2013
Test/Reference	LOR	Unit				
Heavy Metals						
Chromium	5	mg/kg	24	15	18	19
Copper	5	mg/kg	< 5	< 5	19	34
Lead	5	mg/kg	7.0	13	57	58
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	13	5.1	19	14
Zinc	5	mg/kg	21	7.3	160	150

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SS11 Soil S13-My03397 May 01, 2013	SS12 Soil S13-My03398 May 01, 2013	SS13 Soil S13-My03399 May 01, 2013	SS14 Soil S13-My03400 May 01, 2013
Test/Reference	LOR	Unit				
pH (1:5 Aqueous extract)	0.1	units	5.8	6.1	6.6	6.5
% Moisture	0.1	%	7.8	19	14	17
Heavy Metals	1	1				
Arsenic	2	mg/kg	< 2	6.7	7.7	3.4
Cadmium	0.4	mg/kg	< 0.4	0.5	1.8	0.5
Chromium	5	mg/kg	16	16	47	13
Copper	5	mg/kg	12	64	13	24
Lead	5	mg/kg	35	170	180	57
Mercury	0.05	mg/kg	< 0.05	0.07	0.18	< 0.05
Nickel	5	mg/kg	6.2	9.9	13	11
Zinc	5	mg/kg	95	580	960	120

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SS15 Soil S13-My03401 May 01, 2013	SS16 Soil S13-My03402 May 01, 2013	SS17 Soil S13-My03403 May 01, 2013	QC4 Soil S13-My03406 May 01, 2013
Test/Reference	LOR	Unit	Way 01, 2013	Way 01, 2013	Way 01, 2013	Way 01, 2013
pH (1:5 Aqueous extract)	0.1	units	6.2	6.2	6.0	4.4
% Moisture Heavy Metals	0.1	%	17	6.1	19	10
Arsenic	2	mg/kg	2.8	2.4	3.9	5.5
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	24	22	11	30
Copper	5	mg/kg	< 5	12	6.5	19
Lead	5	mg/kg	6.0	17	13	27
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	11	19	9.1	23
Zinc	5	mg/kg	24	32	35	34

Client Sample ID			QC6	QC8	QC9	SS18
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-My03407	S13-My03408	S13-My03409	S13-My03410
			1	1		1
Date Sampled			May 01, 2013	May 01, 2013	May 01, 2013	May 02, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	-	-	< 20
TRH C10-C14	20	mg/kg	-	-	-	< 20
TRH C15-C28	50	mg/kg	-	-	-	52
TRH C29-C36	50	mg/kg	-	-	-	100
TRH C10-36 (Total)	50	mg/kg	-	-	-	150
BTEX						
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	-	93
Total Recoverable Hydrocarbons - Draft 2010 N	IEPM Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5
TRH C6-C10	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	-	< 20
TRH >C10-C16	50	mg/kg	-	-	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	-	< 50
TRH >C16-C34	100	mg/kg	-	-	-	120
TRH >C34-C40	100	mg/kg	-	-	-	< 100
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1232	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1242	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1248	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1254	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	-	-	< 0.5
Total PCB	0.5	mg/kg	-	-	-	< 0.5
Dibutylchlorendate (surr.)	1	%	-	-	-	90
Organochlorine Pesticides (OC)						
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDT	0.2	mg/kg	-	-	-	< 0.2
a-BHC	0.05	mg/kg	-	-	-	< 0.05
a-Chlordane	0.05	mg/kg	-	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	-	< 0.05
b-BHC	0.05	mg/kg	-	-	-	< 0.05
d-BHC	0.05	mg/kg	-	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.05
g-Chlordane	0.05	mg/kg	-	-	-	< 0.05

Client Sample ID			QC6	QC8	QC9	SS18
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-My03407	S13-My03408	S13-My03409	S13-My03410
Date Sampled			May 01, 2013	May 01, 2013	May 01, 2013	May 02, 2013
Test/Reference	LOR	Unit	, , _ , _ ,	, , , , , , , , , , , , , , , , , , , ,	,,	,,,
Organochlorine Pesticides (OC)	LOIK	Onit				
Heptachlor	0.05	mg/kg	_	-	_	< 0.05
Heptachlor epoxide	0.05	mg/kg	_	_	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	_	_	-	< 0.05
Methoxychlor	0.2	mg/kg	_	_	_	< 0.2
Dibutylchlorendate (surr.)	1	%	_	_	_	90
Tetrachloro-m-xylene (surr.)	1	%	_	_	_	86
Polyaromatic Hydrocarbons (PAH)		70				
Acenaphthene	0.5	mg/kg	_	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	_	_	-	< 0.5
Anthracene	0.5	mg/kg	_	_	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	_	_	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	_	_	-	< 0.5
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	_	-	-	< 1
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	=	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH	1	mg/kg	-	-	-	< 1
2-Fluorobiphenyl (surr.)	1	%	-	-	-	109
p-Terphenyl-d14 (surr.)	1	%	-	-	-	86
pH (1:5 Aqueous extract)	0.1	units	7.0	6.0	5.6	-
% Moisture	0.1	%	31	10	12	20
Asbestos			-	-	-	see attached
Heavy Metals						
Arsenic	2	mg/kg	6.9	2.5	< 2	4.8
Cadmium	0.4	mg/kg	1.5	1.4	< 0.4	< 0.4
Chromium	5	mg/kg	37	27	11	6.2
Copper	5	mg/kg	32	21	< 5	5.7
Lead	5	mg/kg	93	86	5.6	8.2
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	18	20	6.9	< 5
Zinc	5	mg/kg	800	230	11	68

Report Number: 377797-S

Client Sample ID			SS19	SS20	SS21	SS22
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-My03411	S13-My03412	S13-My03413	S13-My03414
Date Sampled			May 02, 2013	May 02, 2013	May 02, 2013	May 02, 2013
•	LOD	l lmit	Way 02, 2013	Way 02, 2013	Way 02, 2013	Way 02, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F		T ,,				
TRH C6-C9	20	mg/kg	-	< 20	-	< 20
TRH C10-C14	20	mg/kg	-	< 20	-	< 20
TRH C15-C28	50	mg/kg	-	54	-	< 50
TRH C29-C36	50	mg/kg	-	90	-	110
TRH C10-36 (Total)	50	mg/kg	-	140	-	110
BTEX		- "				
Benzene	0.1	mg/kg	-	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	-	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	-	< 0.1	-	< 0.1
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	98	-	97
Total Recoverable Hydrocarbons - Draft 2010 N						
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	-	< 20	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20	-	< 20
TRH >C10-C16	50	mg/kg	-	< 50	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-	< 50
TRH >C16-C34	100	mg/kg	-	110	-	110
TRH >C34-C40	100	mg/kg	-	< 100	-	< 100
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	-	< 0.5	-	< 0.5
Aroclor-1232	0.5	mg/kg	-	< 0.5	-	< 0.5
Arctor 40.40	0.5	mg/kg	-	< 0.5	-	< 0.5
Arctor 4054	0.5	mg/kg	-	< 0.5	-	< 0.5
Aroclor-1254	0.5	mg/kg	-	< 0.5	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	< 0.5	-	< 0.5
Total PCB	0.5	mg/kg	-	< 0.5	-	< 0.5
Dibutylchlorendate (surr.)	1	%	-	103	-	80
Organochlorine Pesticides (OC)	0.05	T "		0.05		0.05
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDT	0.2	mg/kg	-	< 0.2	-	< 0.2
a-BHC	0.05	mg/kg	-	< 0.05	-	< 0.05
a-Chlordane	0.05	mg/kg	-	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
b-BHC	0.05	mg/kg	-	< 0.05	-	< 0.05
d-BHC	0.05	mg/kg	-	< 0.05	-	< 0.05
Dieldrin Endosulfan I	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan I Endosulfan II	0.05 0.05	mg/kg	-	< 0.05 < 0.05	-	< 0.05 < 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05		< 0.05
Endosulian sulphate Endrin	0.05	mg/kg	-		-	< 0.05
	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin aldehyde Endrin ketone	0.05	mg/kg	-	< 0.05	-	
LIIUIIII KELUITE		mg/kg		< 0.05 < 0.05		< 0.05 < 0.05
g-BHC (Lindane)	0.05	mg/kg	-		-	

Client Sample ID			SS19 Soil	SS20 Soil	SS21 Soil	SS22 Soil
Sample Matrix						
Eurofins mgt Sample No.			S13-My03411	S13-My03412	S13-My03413	S13-My03414
Date Sampled			May 02, 2013	May 02, 2013	May 02, 2013	May 02, 2013
Test/Reference	LOR	Unit				
Organochlorine Pesticides (OC)	<u> </u>					
Heptachlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	< 0.05
Methoxychlor	0.2	mg/kg	-	< 0.2	-	< 0.2
Dibutylchlorendate (surr.)	1	%	-	103	-	80
Tetrachloro-m-xylene (surr.)	1	%	-	90	-	80
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	< 1	< 1	< 1
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH	1	mg/kg	< 1	< 1	< 1	< 1
2-Fluorobiphenyl (surr.)	1	%	103	100	107	108
p-Terphenyl-d14 (surr.)	1	%	81	71	78	73
% Moisture	0.1	%	23	29	22	11
Asbestos			see attached	see attached	see attached	see attached
Heavy Metals						
Arsenic	2	mg/kg	8.1	< 2	8.9	58
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	12	8.7	11	7.1
Copper	5	mg/kg	7.7	6.5	11	9.6
Lead	5	mg/kg	8.8	17	16	31
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	22	9.2	10	< 5
Zinc	5	mg/kg	59	71	61	66

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	SS23 Soil S13-My03415 May 02, 2013	SS24 Soil S13-My03416 May 02, 2013	SS25 Soil S13-My03417 May 02, 2013	SS26 Soil S13-My03418 May 02, 2013
Total Recoverable Hydrocarbons - 1999 NEPM Fract						
TRH C6-C9	20	mg/kg	< 20	-	< 20	< 20

Client Sample ID			SS23	SS24	SS25	SS26
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-My03415	S13-My03416	S13-My03417	S13-My03418
				1	_	
Date Sampled			May 02, 2013	May 02, 2013	May 02, 2013	May 02, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C10-C14	20	mg/kg	< 20	-	< 20	42
TRH C15-C28	50	mg/kg	< 50	-	67	290
TRH C29-C36	50	mg/kg	89	-	85	130
TRH C10-36 (Total)	50	mg/kg	89	-	150	460
BTEX	T.					
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	92	-	97	96
Total Recoverable Hydrocarbons - Draft 2010	NEPM Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	-	< 50	69
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	< 50	69
TRH >C16-C34	100	mg/kg	110	-	120	380
TRH >C34-C40	100	mg/kg	< 100	-	< 100	< 100
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1232	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1242	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1248	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1254	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	-	-	< 0.5
Total PCB	0.5	mg/kg	-	-	-	< 0.5
Dibutylchlorendate (surr.)	1	%	-	-	-	88
Organochlorine Pesticides (OC)						
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	=	< 0.05
4.4'-DDT	0.2	mg/kg	-	-	=	< 0.2
a-BHC	0.05	mg/kg	-	-	=	< 0.05
a-Chlordane	0.05	mg/kg	-	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	-	< 0.05
b-BHC	0.05	mg/kg	-	-	-	< 0.05
d-BHC	0.05	mg/kg	-	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.05
g-Chlordane	0.05	mg/kg	-	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	_	-	< 0.05

Client Sample ID			SS23	SS24	SS25	SS26
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-My03415	S13-My03416	S13-My03417	S13-My03418
Date Sampled			May 02, 2013	May 02, 2013	May 02, 2013	May 02, 2013
Test/Reference	LOR	Unit				
Organochlorine Pesticides (OC)						
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.2	mg/kg	-	-	-	< 0.2
Dibutylchlorendate (surr.)	1	%	-	-	-	88
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	80
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	< 1	< 1	< 1
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.1
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH	1	mg/kg	< 1	< 1	< 1	1.6
2-Fluorobiphenyl (surr.)	1	%	104	105	101	109
p-Terphenyl-d14 (surr.)	1	%	78	72	77	71
		T				
% Moisture	0.1	%	23	35	7.9	5.4
Asbestos			see attached	see attached	see attached	see attached
Heavy Metals						1
Arsenic	2	mg/kg	3.5	3.8	3.1	5.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	9.6	16	12	15
Copper	5	mg/kg	7.5	9.2	8.7	11
Lead	5	mg/kg	44	46	40	12
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	0.05
Nickel	5	mg/kg	5.9	12	17	26
Zinc	5	mg/kg	160	110	70	31

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	SS27 Soil S13-My03419 May 02, 2013	SS28 Soil S13-My03420 May 02, 2013	SS29 Soil S13-My03421 May 02, 2013	SS30 Soil S13-My03422 May 02, 2013
Total Recoverable Hydrocarbons - 1999 NEPM Fract		Offic				
TRH C6-C9	20	mg/kg	< 20	-	< 20	< 20
TRH C10-C14	20	mg/kg	29	-	28	63

Client Sample ID			SS27	SS28	SS29	SS30
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-My03419	S13-My03420	S13-My03421	S13-My03422
Date Sampled			May 02, 2013	May 02, 2013	May 02, 2013	May 02, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM I	Fractions					
TRH C15-C28	50	mg/kg	210	-	210	1200
TRH C29-C36	50	mg/kg	180	-	170	1100
TRH C10-36 (Total)	50	mg/kg	420	-	410	2400
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	0.2
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	95	-	94	92
Total Recoverable Hydrocarbons - Draft 2010 N	EPM Fractions	*				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	< 20
TRH >C10-C16	50	mg/kg	83	-	< 50	460
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	83	-	< 50	460
TRH >C16-C34	100	mg/kg	320	-	330	1900
TRH >C34-C40	100	mg/kg	< 100	-	< 100	200
Polychlorinated Biphenyls (PCB)		_				
Aroclor-1016	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1232	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1242	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1248	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1254	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	-	-	< 0.5
Total PCB	0.5	mg/kg	-	-	-	< 0.5
Dibutylchlorendate (surr.)	1	%	-	-	-	77
Organochlorine Pesticides (OC)		T				
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDT	0.2	mg/kg	-	-	-	< 0.2
a-BHC	0.05	mg/kg	-	-	-	< 0.05
a-Chlordane	0.05	mg/kg	-	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	-	< 0.05
b-BHC	0.05	mg/kg	-	-	-	< 0.05
d-BHC	0.05	mg/kg	-	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.05
g-Chlordane	0.05	mg/kg	-	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05

Client Sample ID			SS27	SS28	SS29	SS30
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S13-My03419	S13-My03420	S13-My03421	S13-My03422
Date Sampled			May 02, 2013	May 02, 2013	May 02, 2013	May 02, 2013
Test/Reference	LOR	Unit				
Organochlorine Pesticides (OC)		•				
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.2	mg/kg	-	-	-	< 0.2
Dibutylchlorendate (surr.)	1	%	-	-	-	77
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	70
Polyaromatic Hydrocarbons (PAH)		•				
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.5
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	< 1	< 1	1.0
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.6
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.1
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	1.1	0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	0.9
Total PAH	1	mg/kg	< 1	< 1	1.1	4.6
2-Fluorobiphenyl (surr.)	1	%	109	105	112	104
p-Terphenyl-d14 (surr.)	1	%	74	84	74	73
		T				
% Moisture	0.1	%	6.9	4.1	3.4	5.0
Asbestos			see attached	see attached	see attached	see attached
Heavy Metals		Τ				
Arsenic	2	mg/kg	6.3	2.9	2.3	2.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	26	6.3	6.2	5.2
Copper	5	mg/kg	6.6	7.4	8.3	7.0
Lead	5	mg/kg	10	7.6	6.5	17
Mercury	0.05	mg/kg	< 0.05	< 0.05	0.08	< 0.05
Nickel	5	mg/kg	18	< 5	7.6	8.9
Zinc	5	mg/kg	56	11	12	41

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SS31 Soil S13-My03423 May 02, 2013	QC11 Soil S13-My03424 May 02, 2013	ASF1 Other S13-My03425 May 02, 2013
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions				
TRH C6-C9	20	mg/kg	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	< 50	-

			2004	0044	1054
Client Sample ID			SS31	QC11	ASF1
Sample Matrix			Soil	Soil	Other
Eurofins mgt Sample No.			S13-My03423	S13-My03424	S13-My03425
Date Sampled			May 02, 2013	May 02, 2013	May 02, 2013
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM Fra	actions				
TRH C29-C36	50	mg/kg	79	75	-
TRH C10-36 (Total)	50	mg/kg	79	75	-
BTEX					
Benzene	0.1	mg/kg	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	94	93	-
Total Recoverable Hydrocarbons - Draft 2010 NEF	M Fractions	*			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-
TRH >C10-C16	50	mg/kg	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	< 100	-
TRH >C34-C40	100	mg/kg	< 100	< 100	-
Polyaromatic Hydrocarbons (PAH)					
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-
Benzo(b)fluoranthene & Benzo(k)fluoranthene	1	mg/kg	< 1	< 1	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-
Total PAH	1	mg/kg	< 1	< 1	-
2-Fluorobiphenyl (surr.)	1	%	107	110	-
p-Terphenyl-d14 (surr.)	1	%	91	90	-
% Moisture	0.1	%	9.3	23	-
Asbestos			see attached	-	see attached
Heavy Metals					
Arsenic	2	mg/kg	3.9	4.8	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-
Chromium	5	mg/kg	8.5	10	-
Copper	5	mg/kg	23	11	-
Lead	5	mg/kg	36	16	-
Mercury	0.05	mg/kg	0.08	< 0.05	-
Nickel	5	mg/kg	19	11	-

Client Sample ID			SS31	QC11	ASF1
Sample Matrix			Soil	Soil	Other
Eurofins mgt Sample No.			S13-My03423	S13-My03424	S13-My03425
Date Sampled			May 02, 2013	May 02, 2013	May 02, 2013
Test/Reference	LOR	Unit			
Heavy Metals					
Zinc	5	mg/kg	94	130	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Sydney	Extracted May 06, 2013	Holding Time 14 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
Total Recoverable Hydrocarbons - Draft 2010 NEPM Fractions	Sydney	May 06, 2013	14 Day
- Method: LM-LTM-ORG2010			
BTEX	Sydney	May 04, 2013	14 Day
- Method: E029/E016 BTEX			
Polychlorinated Biphenyls (PCB)	Sydney	May 06, 2013	14 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Organochlorine Pesticides (OC)	Sydney	May 06, 2013	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polyaromatic Hydrocarbons (PAH)	Sydney	May 06, 2013	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
pH (1:5 Aqueous extract)	Sydney	May 06, 2013	7 Day
- Method: E018 pH			
% Moisture	Sydney	May 04, 2013	28 Day
- Method: E005 Moisture Content			
Metals M8	Sydney	May 03, 2013	28 Day
Mathody F000 Asid Fytysotoble matale in Caile 9 F000 Marayay			

⁻ Method: E022 Acid Extractable metals in Soils & E026 Mercury

Report Number: 377797-S

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au

web: www.mgtlabmark.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook

NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA Client Job No.:

Order No.:

Report #: 377797

Phone: 02 4016 2300 Fax: 02 4016 2380

Eurofins | mgt Client Manager: Jean Heng

5 Day

May 10, 2013

Damien Hendrickx

May 3, 2013 12:30 PM

	Sample Detail Laboratory where analysis is conducted Melbourne Laboratory - NATA Site # 1254 & 14271 Sydney Laboratory - NATA Site # 18217 Brisbane Laboratory - NATA Site # 20794 External Laboratory					Asbestos	НОГД	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M8	Metals M8 filtered	ВТЕХ	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laboratory wh	Laboratory where analysis is conducted															
Melbourne Lab	oratory - NATA S	Site # 1254 & 14	271													
Sydney Labora	atory - NATA Site	# 18217			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Labo	ratory - NATA Si	te # 20794														
External Labor	ratory					Х										
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
TP6_0.0-0.1	May 01, 2013		Soil	S13-My03367	Х			Х		Х						
TP6_0.4-0.5	May 01, 2013		Soil	S13-My03368	Х			Х		Х						
TP6_0.9-1.0	May 01, 2013		Soil	S13-My03369			Х									
TP7_0.0-0.1	May 01, 2013		Soil	S13-My03370	Χ			Х		Χ						Ш
TP7_0.4-0.5	May 01, 2013		Soil	S13-My03371	Χ			Х		Χ						Ш
TP7_1.9-2.0	P7_1.9-2.0 May 01, 2013 Soil S13-My03372					Х										
TP8_0.0-0.1	May 01, 2013		Soil	S13-My03373	Χ			Х		Χ						
TP8_0.4-0.5	May 01, 2013		Soil	S13-My03374			Χ									
TP8_0.9-1.0	May 01, 2013		Soil	S13-My03375			Х									
TP9_0.0-0.1	P9_0.0-0.1 May 01, 2013 Soil S13-My03376				Х			Х		Χ						

Company Name:

Address:

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Received:

Priority:

Contact Name:

Due:

Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

May 3, 2013 12:30 PM

May 10, 2013

Damien Hendrickx

Eurofins | mgt Client Manager: Jean Heng

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

Coffey Environments P/L N'castle Lot 101, 19 Warabrook Boulevard

Warabrook NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA Client Job No.:

Order No.:

Report #: 377797

Phone: 02 4016 2300 Fax: 02 4016 2380

5 Day

	Sample Detail Laboratory where analysis is conducted					Asbestos	HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M8	Metals M8 filtered	BTEX	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laboratory wh	ere analysis is co	onducted														
		Site # 1254 & 1427	1													
	atory - NATA Site				Х		Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
	ratory - NATA Si	te # 20794														
External Labor						Х										
TP9_0.5-0.6	May 01, 2013		oil	S13-My03377	Х			Х		Χ						
TP10_0.0-0.1	May 01, 2013		oil	S13-My03378	Х			Х		Χ						
TP10_0.4-0.5	May 01, 2013		oil	S13-My03379			Χ									
TP11_0.0-0.1	May 01, 2013		oil	S13-My03380	Х			Х		Χ						
TP11_0.4-0.5	May 01, 2013		oil	S13-My03381			Χ									
	TP12_0.0-0.1 May 01, 2013 Soil S13-My03382				Х			Х		Χ						
TP12_0.4-0.5							Χ									
TP13_0.0-0.1				Х			Х		Χ							
TP13_0.2-0.3					Χ											
TP14_0.0-0.1				Х			Х		Χ							
TP14_0.4-0.5	214_0.4-0.5 May 01, 2013 Soil S13-My03387						Χ									

Company Name:

Client Job No.:

Address:

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : enviro@mgtlabmark.com.au web : www.mgtlabmark.com.au

Coffey Environments P/L N'castle Lot 101, 19 Warabrook Boulevard

Warabrook NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA

Order No.: Report #:

377797

Phone: 02 4016 2300

Fax: 02 4016 2380

Received: May 3, 2013 12:30 PM

Due: May 10, 2013 **Priority:** 5 Day

Contact Name: Damien Hendrickx

Eurofins | mgt Client Manager: Jean Heng

	Sample Detail Laboratory where analysis is conducted						HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laboratory wh	Laboratory where analysis is conducted															
Melbourne La	boratory - NATA	Site # 1254 & 14	271													
Sydney Labor	atory - NATA Site	# 18217			Х		Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х
Brisbane Labo	oratory - NATA Si	te # 20794														
External Labo	ratory					Х										
TP15_0.0-0.1	May 01, 2013		Soil	S13-My03388	Х			Х		Х						
TP15_0.9-1.0	May 01, 2013		Soil	S13-My03389			Х									
SS4	May 01, 2013		Soil	S13-My03390	Χ			Х		Х						
SS5	May 01, 2013		Soil	S13-My03391	Χ			Х		Χ						
SS6	May 01, 2013		Soil	S13-My03392	Χ			Х		Χ						
SS7	May 01, 2013		Soil	S13-My03393	Χ			Х		Х						
SS8	SS8 May 01, 2013 Soil S13-My03394			S13-My03394	Χ			Х		Х						
SS9	SS9 May 01, 2013 Soil S13-My03395		Χ			Х		Х								
SS10	May 01, 2013		Soil	S13-My03396	Χ			Х		Χ						
SS11	May 01, 2013		Soil	S13-My03397	Χ			Х		Х						
SS12	May 01, 2013		Soil	S13-My03398	Χ			Х		Χ						

Company Name:

Address:

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Received:

Priority:

Due:

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

May 3, 2013 12:30 PM

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au

web: www.mgtlabmark.com.au

Coffey Environments P/L N'castle

Lot 101, 19 Warabrook Boulevard

Warabrook NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA Client Job No.:

Order No.: Report #:

377797

Phone: 02 4016 2300 Fax:

Contact Name: 02 4016 2380

Eurofins | mgt Client Manager: Jean Heng

Damien Hendrickx

May 10, 2013

5 Day

		Sample Detail			% Moisture	Asbestos	НОГД	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laboratory	Laboratory where analysis is conducted															
Melbourne	Laboratory - NATA S	Site # 1254 & 14	271													
Sydney Lab	ooratory - NATA Site	# 18217			Х		Χ	Х	Х	Х	Χ	Х	Х	Χ	Х	Х
Brisbane La	aboratory - NATA Sit	te # 20794														
External La	boratory					Х										
SS13	May 01, 2013		Soil	S13-My03399	Х			Х		Х						
SS14	May 01, 2013		Soil	S13-My03400	Х			Х		Х						
SS15	May 01, 2013		Soil	S13-My03401	Х			Х		Х						
SS16	May 01, 2013		Soil	S13-My03402	Х			Х		Х						
SS17	May 01, 2013		Soil	S13-My03403	Х			Х		Х						
QC2	May 01, 2013		Water	S13-My03404					Х			Х				
QC3	QC3 May 01, 2013 Water S13-My03405								Х	Х				Х		
QC4			Х			Х		Х								
QC6				Х			Х		Х							
QC8				Х			Х		Х							
QC9	C9 May 01, 2013 Soil S13-My03409				Χ			Χ		Χ						

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook

NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA Client Job No.:

Order No.: Report #:

377797

Phone: 02 4016 2300 Fax: 02 4016 2380

Due: May 10, 2013 Priority: 5 Day

Contact Name: Damien Hendrickx

Eurofins | mgt Client Manager: Jean Heng

May 3, 2013 12:30 PM

	Sa	ample Detail		% Moisture	Asbestos	HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laborator	y where analysis is cond	lucted													
Melbourne	Laboratory - NATA Site	# 1254 & 14271													
Sydney La	boratory - NATA Site #	18217		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane I	_aboratory - NATA Site #	‡ 2079 4													
External L	aboratory				Х										
SS18	May 02, 2013	Soil	S13-My03410	Х	Х				Х		Х	Х	Х	Х	Х
SS19	May 02, 2013	Soil	S13-My03411	Х	Х				Х					Х	
SS20	May 02, 2013	Soil	S13-My03412	Х	Х				Х		Х	Χ	Х	Х	Х
SS21	May 02, 2013	Soil	S13-My03413	Х	Х				Х					Х	
SS22	May 02, 2013	Soil	S13-My03414	Х	Х				Х		Х	Х	Х	Х	Х
SS23	May 02, 2013	Soil	S13-My03415	Х	Х				Х		Х			Х	Х
SS24	May 02, 2013	Soil	S13-My03416	Х	Х				Х					Х	
SS25	May 02, 2013	Soil	S13-My03417	Х	Х				Х		Х			Х	Х
SS26	May 02, 2013	Soil	S13-My03418	Х	Х				Х		Х	Χ	Х	Х	Х
SS27	May 02, 2013	Soil	S13-My03419	Х	Х				Х		Х			Х	Х
SS28	May 02, 2013	Soil	S13-My03420	Χ	Χ				Χ					Χ	

Address:

Client Job No.:

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Received:

Due:

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Company Name: Coffey Environments P/L N'castle

Lot 101, 19 Warabrook Boulevard

Warabrook NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA

Order No.:

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

Report #: 377797

Phone: 02 4016 2300 Fax:

Priority: **Contact Name:** 02 4016 2380

5 Day Damien Hendrickx

Eurofins | mgt Client Manager: Jean Heng

May 10, 2013

May 3, 2013 12:30 PM

		Sample Detail			% Moisture	Asbestos	HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laboratory w	here analysis is c	onducted														
Melbourne La	boratory - NATA	Site # 1254 & 14	271													
Sydney Labor	ratory - NATA Site	# 18217			Х		Х	Х	Х	Х	Х	Х	Х	Х	Χ	X
Brisbane Lab	oratory - NATA Si	te # 20794														
External Labo	oratory		1			Х										
SS29	May 02, 2013		Soil	S13-My03421	Х	Χ				Х		Х			Х	Х
SS30	May 02, 2013		Soil	S13-My03422	Х	Х				Х		Х	Х	Х	Х	Х
SS31	May 02, 2013		Soil	S13-My03423	Х	Х				Х		Х			Х	Х
QC11	May 02, 2013		Soil	S13-My03424	Х					Х		Х			Х	Х
ASF1	May 02, 2013		Other	S13-My03425		Χ										

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram mg/l: milligrams per litre
ug/l: micrograms per litre ppm: Parts per million
ppb: Parts per billion %: Percentage
ora/100ml: Organisms per 100 millilitres NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 377797-S

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					0000
Total Recoverable Hydrocarbons - 1999 NEPM Fraction Petroleum Hydrocarbons (TPH)	s E004				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX E029/E016 BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - Draft 2010 NEPM Fra LTM-ORG2010	ctions LM-				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH C6-C10 less BTEX (F1)	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Polychlorinated Biphenyls (PCB) E013 Polychlorinated (PCB)	Biphenyls				
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides (OC) E013 Organochlorine P	esticides (OC)				
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.2	0.2	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
a-Chlordane	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
g-Chlordane	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	Code
Methoxychlor		< 0.05	0.03	Pass	
Method Blank	mg/kg	< 0.2	0.2	Fass	
Polyaromatic Hydrocarbons (PAH) E007 Polyaromatic	Uvdroorbono			I	
(PAH)	пушосатропѕ				
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	mg/kg	< 1	1	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	199			1 0.00	
Metals M8 E022 Acid Extractable metals in Soils & E02	6 Mercury				
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.05	0.05	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery		, 0		1 455	
Total Recoverable Hydrocarbons - 1999 NEPM Fraction Petroleum Hydrocarbons (TPH)	ns E004				
TRH C6-C9	%	86	70-130	Pass	
TRH C10-C14	%	87	70-130	Pass	
LCS - % Recovery					
BTEX E029/E016 BTEX					
Benzene	%	113	70-130	Pass	
Toluene	%	108	70-130	Pass	
Ethylbenzene	%	106	70-130	Pass	
m&p-Xylenes	%	105	70-130	Pass	
o-Xylene	%	105	70-130	Pass	
Xylenes - Total	%	105	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - Draft 2010 NEPM Fr LTM-ORG2010	actions LM-				
Naphthalene	%	88	70-130	Pass	
TRH C6-C10	%	95	70-130	Pass	
TRH >C10-C16	%	93	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls (PCB) E013 Polychlorinated (PCB)	Biphenyls				
Aroclor-1260	%	106	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides (OC) E013 Organochlorine	Pesticides (OC)				
4.4'-DDD	%	98	70-130	Pass	

Test	Iligu		Units	Result 1		Acceptance	Pass	Qualifying
						Limits	Limits	Code
4.4'-DDE			%	104		70-130	Pass	
4.4'-DDT			%	93		70-130	Pass	
a-BHC			%	94		70-130	Pass	
a-Chlordane			%	97		70-130	Pass	
Aldrin			%	103		70-130	Pass	
b-BHC			%	103		70-130	Pass	
d-BHC			%	96		70-130	Pass	
Dieldrin Endosulfan I			% %	101 105		70-130	Pass Pass	
Endosulfan II			%			70-130	Pass	
			%	100 87		70-130	Pass	
Endosulfan sulphate Endrin			%			70-130	Pass	
Endrin aldehyde			%	100 96		70-130 70-130	Pass	
Endrin ketone			%	95		70-130	Pass	
			%	98			Pass	
g-BHC (Lindane)			%	98		70-130	Pass	
g-Chlordane			% %	101		70-130	Pass	
Heptachlor Heptachlor epoxide			%	101		70-130 70-130	Pass	
Hexachlorobenzene			%	89		70-130	Pass	
Methoxychlor			%	96		70-130	Pass	
LCS - % Recovery			/0	1 90		70-130	r ass	
Polyaromatic Hydrocarbons (PAH) (PAH)	E007 Polyaromat	ic Hydro	carbons					
Acenaphthene			%	108		70-130	Pass	
Acenaphthylene			%	109		70-130	Pass	
Anthracene			%	107		70-130	Pass	
Benz(a)anthracene			%	92		70-130	Pass	
Benzo(a)pyrene			%	102		70-130	Pass	
Benzo(b)fluoranthene & Benzo(k)fluo	oranthene		%	102		70-130	Pass	
Benzo(g.h.i)perylene	0.0		%	103		70-130	Pass	
Chrysene			%	100		70-130	Pass	
Dibenz(a.h)anthracene			%	102		70-130	Pass	
Fluoranthene			%	101		70-130	Pass	
Fluorene			%	104		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	103		70-130	Pass	
Naphthalene			%	107		70-130	Pass	
Phenanthrene			%	103		70-130	Pass	
Pyrene			%	96		70-130	Pass	
LCS - % Recovery								
Metals M8 E022 Acid Extractable n	netals in Soils & E	026 Merc	ury					
Arsenic			%	84		70-130	Pass	
Cadmium			%	104		70-130	Pass	
Chromium			%	91		70-130	Pass	
Copper			%	95		70-130	Pass	
Lead			%	94		70-130	Pass	
Mercury			%	102		70-130	Pass	
Nickel			%	92		70-130	Pass	
Zinc			%	97		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					· '	1		
Metals M8				Result 1		_		
Arsenic	S13-My03367	CP	%	98		70-130	Pass	
Cadmium	S13-My03367	CP	%	100		70-130	Pass	
Chromium	S13-My03367	CP	%	94		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Copper	S13-My03367	CP	%	102	70-130	Pass	
Lead	S13-My03367	CP	%	99	70-130	Pass	
Mercury	S13-My03367	CP	%	106	70-130	Pass	
Nickel	S13-My03367	CP	%	97	70-130	Pass	
Zinc	S13-My03367	CP	%	108	70-130	Pass	
Spike - % Recovery							
Metals M8				Result 1			
Arsenic	S13-My03384	CP	%	81	70-130	Pass	
Cadmium	S13-My03384	CP	%	103	70-130	Pass	
Chromium	S13-My03384	CP	%	103	70-130	Pass	
Copper	S13-My03384	CP	%	104	70-130	Pass	
Lead	S13-My03384	СР	%	106	70-130	Pass	
Mercury	S13-My03384	СР	%	108	70-130	Pass	
Nickel	S13-My03384	СР	%	96	70-130	Pass	
Spike - % Recovery							
Metals M8				Result 1			
Arsenic	S13-My03397	СР	%	92	70-130	Pass	
Cadmium	S13-My03397	CP	%	97	70-130	Pass	
Chromium	S13-My03397	CP	%	76	70-130	Pass	
Copper	S13-My03397	CP	%	99	70-130	Pass	
Lead	S13-My03397	CP	%	114	70-130	Pass	
Mercury	S13-My03397	CP	%	103	70-130	Pass	
Nickel	S13-My03397	CP	%	96	70-130	Pass	
Spike - % Recovery	010 Wy00001	<u> </u>	70	<u> </u>	70 130	1 433	
Metals M8				Result 1	T		
Arsenic	S13-My03409	СР	%	110	70-130	Pass	
Cadmium	S13-My03409	CP	<u> </u>	106	70-130	Pass	
		CP	%				
Conner	S13-My03409	CP	%	90	70-130	Pass	
Copper	S13-My03409				70-130	Pass	
Lead	S13-My03409	CP	%	98	70-130	Pass	
Mercury	S13-My03409	CP	%	108	70-130	Pass	
Nickel	S13-My03409	CP	%	95	70-130	Pass	
Zinc	S13-My03409	CP	%	105	70-130	Pass	
Spike - % Recovery		_		I - I	<u> </u>		
Total Recoverable Hydrocarbo				Result 1		_	
TRH C6-C9	S13-My03410	CP	%	78	70-130	Pass	
TRH C10-C14	S13-My03410	CP	%	96	70-130	Pass	
Spike - % Recovery					1		
BTEX		1		Result 1			
Benzene	S13-My03410	CP	%	102	70-130	Pass	
Toluene	S13-My03410	CP	%	97	70-130	Pass	
Ethylbenzene	S13-My03410	CP	%	95	70-130	Pass	
m&p-Xylenes	S13-My03410	CP	%	95	70-130	Pass	
o-Xylene	S13-My03410	CP	%	95	70-130	Pass	
Xylenes - Total	S13-My03410	CP	%	95	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ons - Draft 2010 NEPM	Fractions	S	Result 1			
Naphthalene	S13-My03410	CP	%	82	70-130	Pass	
TRH C6-C10	S13-My03410	CP	%	86	70-130	Pass	
TRH >C10-C16	S13-My03410	CP	%	103	70-130	Pass	
Spike - % Recovery							
Polychlorinated Biphenyls (Po	CB)			Result 1			
Aroclor-1260	S13-My03410	СР	%	116	70-130	Pass	
				· •	<u> </u>		

_	- mgc	QA			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1	Limits	Limits	Code
4.4'-DDD	S13-My03410	CP	%	104	70-130	Pass	
4.4'-DDE	S13-My03410	CP	%	107	70-130	Pass	
4.4'-DDT	S13-My03410	CP	%	73	70-130	Pass	
a-BHC	S13-My03410	CP	%	99	70-130	Pass	
a-Chlordane	S13-My03410	CP	%	91	70-130	Pass	
Aldrin	S13-My03410	CP	%	95	70-130	Pass	
b-BHC	S13-My03410	CP	%	101	70-130	Pass	
d-BHC	S13-My03410	CP	%	89	70-130	Pass	
Dieldrin	S13-My03410	CP	%	96	70-130	Pass	
Endosulfan I	S13-My03410	CP	%	105	70-130	Pass	
Endosulfan II	S13-My03410	CP	%	94	70-130	Pass	
Endosulfan sulphate	S13-My03410	CP	%	73	70-130	Pass	
Endrin	S13-My03410	CP	%	94	70-130	Pass	
Endrin aldehyde	S13-My03410	CP	%	88	70-130	Pass	
Endrin ketone	S13-My03410	CP	%	85	70-130	Pass	
g-BHC (Lindane)	S13-My03410	CP	%	93	70-130	Pass	
g-Chlordane	S13-My03410	CP	%	92	70-130	Pass	
Heptachlor	S13-My03410	CP	%	91	70-130	Pass	
Heptachlor epoxide	S13-My03410	CP	%	95	70-130	Pass	
Hexachlorobenzene	S13-My03410	CP	%	97	70-130	Pass	
Methoxychlor	S13-My03410	CP	%	115	70-130	Pass	
Spike - % Recovery							
Polyaromatic Hydrocarbons (PA	λH)			Result 1			
Acenaphthene	S13-My03410	CP	%	109	70-130	Pass	
Acenaphthylene	S13-My03410	СР	%	110	70-130	Pass	
Anthracene	S13-My03410	СР	%	105	70-130	Pass	
Benz(a)anthracene	S13-My03410	СР	%	94	70-130	Pass	
Benzo(a)pyrene	S13-My03410	СР	%	109	70-130	Pass	
Benzo(b)fluoranthene &							
Benzo(k)fluoranthene	S13-My03410	CP	%	110	70-130	Pass	
Benzo(g.h.i)perylene	S13-My03410	CP	%	103	70-130	Pass	
Chrysene	S13-My03410	CP	%	100	70-130	Pass	
Dibenz(a.h)anthracene	S13-My03410	CP	%	112	70-130	Pass	
Fluoranthene	S13-My03410	CP	%	101	70-130	Pass	
Fluorene	S13-My03410	CP	%	105	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S13-My03410	CP	%	107	70-130	Pass	
Naphthalene	S13-My03410	CP	%	111	70-130	Pass	
Phenanthrene	S13-My03410	CP	%	108	70-130	Pass	
Pyrene	S13-My03410	CP	%	92	70-130	Pass	
Spike - % Recovery				T		I	
Metals M8				Result 1			
Arsenic	S13-My03419	CP	%	94	70-130	Pass	
Cadmium	S13-My03419	CP	%	98	70-130	Pass	
Chromium	S13-My03419	CP	%	75	70-130	Pass	
Copper	S13-My03419	CP	%	104	70-130	Pass	
Lead	S13-My03419	CP	%	100	70-130	Pass	
Mercury	S13-My03419	CP	%	108	70-130	Pass	
Nickel	S13-My03419	CP	%	86	70-130	Pass	
Zinc	S13-My03419	CP	%	129	70-130	Pass	
Spike - % Recovery							
Polyaromatic Hydrocarbons (PA	(H)			Result 1			
Acenaphthene	S13-My03420	CP	%	108	70-130	Pass	
Acenaphthylene	S13-My03420	CP	%	108	70-130	Pass	
Anthracene	S13-My03420	CP	%	97	70-130	Pass	
Benz(a)anthracene	S13-My03420	CP	%	109	70-130	Pass	

i .								_	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzo(a)pyrene	S13-My03420	CP	%	83			70-130	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoranthene	S13-My03420	СР	%	99			70-130	Pass	
Benzo(g.h.i)perylene	S13-My03420	CP	%	76			70-130	Pass	
Chrysene	S13-My03420	CP	%	113			70-130	Pass	
Dibenz(a.h)anthracene	S13-My03420	СР	%	90			70-130	Pass	
Fluoranthene	S13-My03420	СР	%	126			70-130	Pass	
Fluorene	S13-My03420	CP	%	115			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S13-My03420	CP	%	81			70-130	Pass	
Naphthalene	S13-My03420	CP	%	117			70-130	Pass	
Phenanthrene	S13-My03420	CP	%	120			70-130	Pass	
Pyrene	S13-My03420	CP	%	117			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C6-C9	S13-My03424	CP	%	80			70-130	Pass	
Spike - % Recovery									
ВТЕХ				Result 1					
Benzene	S13-My03424	CP	%	104			70-130	Pass	
Toluene	S13-My03424	CP	%	100			70-130	Pass	
Ethylbenzene	S13-My03424	CP	%	98			70-130	Pass	
m&p-Xylenes	S13-My03424	CP	%	97			70-130	Pass	
o-Xylene	S13-My03424	CP	%	97			70-130	Pass	
Xylenes - Total	S13-My03424	CP	%	97			70-130	Pass	
Spike - % Recovery							,		
Total Recoverable Hydrocarbons -	Draft 2010 NEPM	Fraction	s	Result 1					
Naphthalene	S13-My03424	CP	%	80			70-130	Pass	
TRH C6-C10	S13-My03424	CP	%	87			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Metals M8				Result 1	Result 2	RPD			
Arsenic	S13-My03367	CP	mg/kg		4.4	13	200/	_	
0-4			mg/kg	3.9	7.7	10	30%	Pass	
Cadmium	S13-My03367	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass Pass	
Chromium	S13-My03367 S13-My03367								
	1	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S13-My03367	CP CP	mg/kg mg/kg	< 0.4 9.6	< 0.4	<1 29	30% 30%	Pass Pass	
Chromium Copper	S13-My03367 S13-My03367	CP CP CP	mg/kg mg/kg mg/kg	< 0.4 9.6 8.1	< 0.4 13 10	<1 29 22	30% 30% 30%	Pass Pass Pass	
Chromium Copper Lead	\$13-My03367 \$13-My03367 \$13-My03367	CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19	< 0.4 13 10 25	<1 29 22 28	30% 30% 30% 30%	Pass Pass Pass Pass	
Chromium Copper Lead Mercury	S13-My03367 S13-My03367 S13-My03367 S13-My03367	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05	< 0.4 13 10 25 < 0.05	<1 29 22 28 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Chromium Copper Lead Mercury Nickel	S13-My03367 S13-My03367 S13-My03367 S13-My03367 S13-My03367	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10	< 0.4 13 10 25 < 0.05 14	<1 29 22 28 <1 29	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Chromium Copper Lead Mercury Nickel Zinc	S13-My03367 S13-My03367 S13-My03367 S13-My03367 S13-My03367	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10	< 0.4 13 10 25 < 0.05 14	<1 29 22 28 <1 29	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Chromium Copper Lead Mercury Nickel Zinc Duplicate	S13-My03367 S13-My03367 S13-My03367 S13-My03367 S13-My03367	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10	< 0.4 13 10 25 < 0.05 14 21	<1 29 22 28 <1 29 28	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Chromium Copper Lead Mercury Nickel Zinc Duplicate Metals M8	\$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367	CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10 16 Result 1 2.7 < 0.4	< 0.4 13 10 25 < 0.05 14 21 Result 2 3.0 < 0.4	<1 29 22 28 <1 29 28 <1 11 29 11 <1	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Chromium Copper Lead Mercury Nickel Zinc Duplicate Metals M8 Arsenic	\$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367	CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10 16 Result 1 2.7	< 0.4 13 10 25 < 0.05 14 21 Result 2 3.0	<1 29 22 28 <1 29 28 <1 29 11 11	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Chromium Copper Lead Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium	\$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384	CP CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10 16 Result 1 2.7 < 0.4 15 5.0	< 0.4 13 10 25 < 0.05 14 21 Result 2 3.0 < 0.4 14 5.7	<1 29 22 28 <1 29 28 28	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Chromium Copper Lead Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium Chromium Copper Mercury	\$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10 16 Result 1 2.7 < 0.4 15 5.0 < 0.05	< 0.4 13 10 25 < 0.05 14 21 Result 2 3.0 < 0.4 14 5.7 < 0.05	<1 29 22 28 <1 29 28 <1 29 28	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Chromium Copper Lead Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium Chromium Copper Mercury Nickel	\$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10 16 Result 1 2.7 < 0.4 15 5.0 < 0.05 6.1	< 0.4 13 10 25 < 0.05 14 21 Result 2 3.0 < 0.4 14 5.7 < 0.05 5.9	<1 29 22 28 <1 29 28 <1 29 28	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Chromium Copper Lead Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium Chromium Copper Mercury Nickel Zinc	\$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10 16 Result 1 2.7 < 0.4 15 5.0 < 0.05	< 0.4 13 10 25 < 0.05 14 21 Result 2 3.0 < 0.4 14 5.7 < 0.05	<1 29 22 28 <1 29 28 <1 29 28	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Chromium Copper Lead Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium Chromium Copper Mercury Nickel Zinc	\$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10 16 Result 1 2.7 < 0.4 15 5.0 < 0.05 6.1 60	< 0.4 13 10 25 < 0.05 14 21 Result 2 3.0 < 0.4 14 5.7 < 0.05 5.9 74	<1 29 22 28 <1 29 28 <1 29 28 <1 29 28 <1 30 11 <1 3.0 13 <1 4.0 21	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Chromium Copper Lead Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium Chromium Copper Mercury Nickel Zinc	\$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384	CP CP CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10 16 Result 1 2.7 < 0.4 15 5.0 < 0.05 6.1 60 Result 1	< 0.4 13 10 25 < 0.05 14 21 Result 2 3.0 < 0.4 14 5.7 < 0.05 5.9 74 Result 2	<1 29 22 28 <1 29 28 <1 29 28 <1 30 11 <1 4.0 21	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Chromium Copper Lead Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium Chromium Copper Mercury Nickel Zinc Duplicate Metals M8	\$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10 16 Result 1 2.7 < 0.4 15 5.0 < 0.05 6.1 60 Result 1 < 2	< 0.4 13 10 25 < 0.05 14 21 Result 2 3.0 < 0.4 14 5.7 < 0.05 5.9 74 Result 2 2.8	<1 29 22 28 <1 29 28 <1 29 28 <1 30 30 30 41 4.0 21	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
Chromium Copper Lead Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium Chromium Copper Mercury Nickel Zinc	\$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10 16 Result 1 2.7 < 0.4 15 5.0 < 0.05 6.1 60 Result 1 < 2 < 0.4	< 0.4 13 10 25 < 0.05 14 21 Result 2 3.0 < 0.4 14 5.7 < 0.05 5.9 74 Result 2 2.8 0.5	<1 29 22 28 <1 29 28 <1 29 28 <1 30 21 <1 30 21 <1 4.0 21 <1 50 79 30	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
Chromium Copper Lead Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium Chromium Copper Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium Chromium Copper Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium Chromium Chromium	\$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03387 \$13-My03397 \$13-My03397	CP CP CP CP CP CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10 16 Result 1 2.7 < 0.4 15 5.0 < 0.05 6.1 60 Result 1 < 2 < 0.4 16	< 0.4 13 10 25 < 0.05 14 21 Result 2 3.0 < 0.4 14 5.7 < 0.05 5.9 74 Result 2 2.8 0.5 19	<1 29 22 28 <1 29 28 <1 29 28 <1 29 28 <1 29 28 <1 40 21 <1 20 21 <1 20 21 <1 20 21 <1 20 21 <1 20 21 <1 20 22 <1 20 22 <1 20 22 <1 20 20 20 20 <1 20 20 20 20 <1 20 20 20 20 <1 20 20 20 20 20 20 20 20 20 20 20 20 20	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15
Chromium Copper Lead Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium Chromium Copper Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium Copper Mercury Nickel Zinc Duplicate Metals M8 Arsenic Cadmium	\$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03367 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384 \$13-My03384	CP CP CP CP CP CP CP CP CP CP CP CP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.4 9.6 8.1 19 < 0.05 10 16 Result 1 2.7 < 0.4 15 5.0 < 0.05 6.1 60 Result 1 < 2 < 0.4	< 0.4 13 10 25 < 0.05 14 21 Result 2 3.0 < 0.4 14 5.7 < 0.05 5.9 74 Result 2 2.8 0.5	<1 29 22 28 <1 29 28 <1 29 28 <1 30 21 <1 30 21 <1 4.0 21 <1 50 79 30	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	Q15

	Illgt								
Duplicate									
Metals M8				Result 1	Result 2	RPD			
Mercury	S13-My03397	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S13-My03397	CP	mg/kg	6.2	5.8	6.0	30%	Pass	
Zinc	S13-My03397	CP	mg/kg	95	120	21	30%	Pass	
Duplicate									
Metals M8				Result 1	Result 2	RPD			
Arsenic	S13-My03409	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S13-My03409	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Copper	S13-My03409	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	S13-My03409	CP	mg/kg	5.6	< 5	27	30%	Pass	
Mercury	S13-My03409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S13-My03409	CP	mg/kg	6.9	9.3	29	30%	Pass	
Zinc	S13-My03409	СР	mg/kg	11	12	12	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S13-My03410	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S13-My03410	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S13-My03410	CP	mg/kg	52	< 50	18	30%	Pass	
TRH C29-C36	S13-My03410	СР	mg/kg	100	77	25	30%	Pass	
Duplicate									<u> </u>
BTEX				Result 1	Result 2	RPD			
Benzene	S13-My03410	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S13-My03410	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S13-My03410	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S13-My03410	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S13-My03410	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S13-My03410	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	Draft 2010 NEPM	Fraction	s	Result 1	Result 2	RPD			
Naphthalene	S13-My03410	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S13-My03410	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-My03410	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S13-My03410	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S13-My03410	СР	mg/kg	120	< 100	22	30%	Pass	
TRH >C34-C40	S13-My03410	СР	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls (PCB)				Result 1	Result 2	RPD			
Aroclor-1016	S13-My03410	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S13-My03410	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
1								. –	·
Organochlorine Pesticides (OC)				Result 1	Result 2	RPD			
Organochlorine Pesticides (OC) 4.4'-DDD	S13-My03410	СР	mg/kg	Result 1 < 0.05	Result 2 < 0.05	RPD <1	30%	Pass	
	\$13-My03410 \$13-My03410	CP CP	mg/kg mg/kg	1			30% 30%	Pass Pass	
4.4'-DDD				< 0.05	< 0.05	<1		1 1	
4.4'-DDD 4.4'-DDE	S13-My03410	СР	mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	<1 <1	30%	Pass	
4.4'-DDD 4.4'-DDE 4.4'-DDT	S13-My03410 S13-My03410	CP CP	mg/kg mg/kg	< 0.05 < 0.05 < 0.2	< 0.05 < 0.05 < 0.2	<1 <1 <1	30% 30%	Pass Pass	
4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC	\$13-My03410 \$13-My03410 \$13-My03410	CP CP	mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.2 < 0.05	< 0.05 < 0.05 < 0.2 < 0.05	<1 <1 <1 <1	30% 30% 30%	Pass Pass Pass	
4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC a-Chlordane	\$13-My03410 \$13-My03410 \$13-My03410 \$13-My03410	CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.2 < 0.05 < 0.05	< 0.05 < 0.05 < 0.2 < 0.05 < 0.05	<1 <1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC a-Chlordane Aldrin	\$13-My03410 \$13-My03410 \$13-My03410 \$13-My03410 \$13-My03410	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.2 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.2 < 0.05 < 0.05 < 0.05	<1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC a-Chlordane Aldrin b-BHC	\$13-My03410 \$13-My03410 \$13-My03410 \$13-My03410 \$13-My03410 \$13-My03410	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.2 < 0.05 < 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.2 < 0.05 < 0.05 < 0.05 < 0.05	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	

	11186								
Duplicate				T					
Organochlorine Pesticides (OC)				Result 1	Result 2	RPD			
Endosulfan II	S13-My03410	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S13-My03410	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S13-My03410	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S13-My03410	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S13-My03410	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S13-My03410	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-Chlordane	S13-My03410	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S13-My03410	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S13-My03410	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S13-My03410	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S13-My03410	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				ı	1				
Polyaromatic Hydrocarbons (PAH)			T	Result 1	Result 2	RPD			
Acenaphthene	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b)fluoranthene &	C42 M .02440	CD				.4	200/	Dana	
Benzo(k)fluoranthene	S13-My03410	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S13-My03410	CP CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene Duplicate	S13-My03410	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Metals M8				Result 1	Result 2	RPD	I		
Arsenic	S13-My03419	CP	mg/kg	6.3	6.0	6.0	30%	Pass	
Cadmium	S13-My03419	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S13-My03419	CP	mg/kg	26	25	<1	30%	Pass	
Copper	S13-My03419	CP	mg/kg	6.6	7.6	14	30%	Pass	
Lead	S13-My03419	CP	mg/kg	10	11	10	30%	Pass	
Mercury	S13-My03419	CP	mg/kg	< 0.05	< 0.05		30%	Pass	
Nickel	S13-My03419	CP	mg/kg	18	18	4.0	30%	Pass	
Zinc	S13-My03419	CP	mg/kg	56	64	13	30%	Pass	
Duplicate			1					7 0.00	
Polyaromatic Hydrocarbons (PAH))			Result 1	Result 2	RPD			
Acenaphthene	S13-My03420	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S13-My03420	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S13-My03420	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S13-My03420	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S13-My03420	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b)fluoranthene &	,				-				
Benzo(k)fluoranthene	S13-My03420	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Benzo(g.h.i)perylene	S13-My03420	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S13-My03420	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S13-My03420	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S13-My03420	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S13-My03420	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S13-My03420	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S13-My03420	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polyaromatic Hydrocarbons (PAH))			Result 1	Result 2	RPD			
Phenanthrene	S13-My03420	CP	mg/kg	< 0.5	0.6	24	30%	Pass	
Pyrene	S13-My03420	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S13-My03424	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S13-My03424	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S13-My03424	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S13-My03424	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S13-My03424	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S13-My03424	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S13-My03424	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	Draft 2010 NEPM	Fraction	s	Result 1	Result 2	RPD			
Naphthalene	S13-My03424	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S13-My03424	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-My03424	СР	mg/kg	< 20	< 20	<1	30%	Pass	

Comments

Please note: Asbestos analysed by ASET (Job: ASET33182/36362/1-15)NATA Accreditation: 14484

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	Yes

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
Q15	The RPD reported passes Eurofins mgt's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

Authorised By

Jean Heng Client Services

Bob Symons Senior Analyst-Inorganic (NSW)
Laura Schofield Senior Analyst-Volatile (NSW)
Ryan Hamilton Senior Analyst-Organic (NSW)
James Norford Senior Analyst-Metal (NSW)

Dr. Bob Symons

Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook **NSW 2304**

Attention: **Damien Hendrickx**

Report 377797-W

Client Reference BELLBIRD HEIGHTS ENAUWARA04363AA

Received Date May 03, 2013

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix			QC2 Water	QC3 Water
•				
Eurofins mgt Sample No.			S13-My03404	S13-My03405
Date Sampled			May 01, 2013	May 01, 2013
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions			
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	-	< 0.05
TRH C15-C28	0.1	mg/L	-	< 0.1
TRH C29-C36	0.1	mg/L	-	< 0.1
TRH C10-36 (Total)	0.1	mg/L	-	< 0.1
BTEX				
Benzene	0.001	mg/L	< 0.001	< 0.001
Toluene	0.001	mg/L	0.002	0.002
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	0.002	0.004
o-Xylene	0.001	mg/L	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	0.004
4-Bromofluorobenzene (surr.)	1	%	103	107
Total Recoverable Hydrocarbons - Draft 2010 N	NEPM Fractions	*		
Naphthalene ^{N02}	0.02	mg/L	-	< 0.02
TRH C6-C10	0.02	mg/L	-	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	-	< 0.02
TRH >C10-C16	0.05	mg/L	-	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	-	< 0.05
TRH >C16-C34	0.1	mg/L	-	< 0.1
TRH >C34-C40	0.1	mg/L	-	< 0.1
Heavy Metals				
Arsenic (filtered)	0.001	mg/L	-	< 0.001
Cadmium (filtered)	0.0001	mg/L	-	< 0.0001
Chromium (filtered)	0.001	mg/L	-	< 0.001
Copper (filtered)	0.001	mg/L	-	< 0.001
Lead (filtered)	0.001	mg/L	-	< 0.001
Mercury (filtered)	0.0001	mg/L	-	< 0.0001
Nickel (filtered)	0.001	mg/L	-	< 0.001
Zinc (filtered)	0.005	mg/L	-	< 0.005

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 03, 2013	7 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
Total Recoverable Hydrocarbons - Draft 2010 NEPM Fractions	Sydney	May 03, 2013	7 Day
- Method: LM-LTM-ORG2010			
BTEX	Sydney	May 03, 2013	14 Day
- Method: E029/E016 BTEX			
Metals M8 filtered	Sydney	May 03, 2013	28 Day
- Method: E020/E030 Filtered Metals in Water & E026 Mercury			

Report Number: 377797-W

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Company Name: Coffey Environments P/L N'castle

Address: Lot 101, 19 Warabrook Boulevard

Warabrook

NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA Client Job No.:

Order No.: Report #:

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

377797

Phone: 02 4016 2300

Fax: 02 4016 2380 Received: May 3, 2013 12:30 PM

Due: May 10, 2013 Priority: 5 Day

Contact Name: Damien Hendrickx

Eurofins | mgt Client Manager: Jean Heng

Laboratory wh	ere analysis is co	Sample Detail			% Moisture	Asbestos	НОГД	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Melbourne Lal	ooratory - NATA S	Site # 1254 & 14	271													
Sydney Labora	atory - NATA Site	# 18217			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Labo	oratory - NATA Sit	te # 20794														\square
External Labo	ratory			i		Х										
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
TP6_0.0-0.1	May 01, 2013		Soil	S13-My03367	Χ			Х		Х						
TP6_0.4-0.5	May 01, 2013		Soil	S13-My03368	Х			Х		Х						
TP6_0.9-1.0	May 01, 2013		Soil	S13-My03369			Х									
TP7_0.0-0.1	May 01, 2013		Soil	S13-My03370	Х			Х		Х						
TP7_0.4-0.5	May 01, 2013		Soil	S13-My03371	Х			Х		Х						
TP7_1.9-2.0	May 01, 2013		Soil	S13-My03372			Х									
TP8_0.0-0.1	May 01, 2013		Soil	S13-My03373	Х			Х		Х						
TP8_0.4-0.5	May 01, 2013		Soil	S13-My03374			Х									
TP8_0.9-1.0	May 01, 2013		Soil	S13-My03375			Х									
TP9_0.0-0.1	May 01, 2013		Soil	S13-My03376	Х			Х		Х						

Page 3 of 13

Date Reported:May 09, 2013 Date Reported:May 09, 2013

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

Due:

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au

web: www.mgtlabmark.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook

NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA Client Job No.:

Order No.: Report #:

377797

Phone: 02 4016 2300 Fax: 02 4016 2380

Contact Name:

Eurofins | mgt Client Manager: Jean Heng

Damien Hendrickx

May 10, 2013

5 Day

May 3, 2013 12:30 PM

		Sample Detail			% Moisture	Asbestos	HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laboratory wh	nere analysis is c	onducted														
Melbourne Lal	boratory - NATA	Site # 1254 & 142	271													
Sydney Labor	atory - NATA Site	# 18217			Χ		Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х
Brisbane Labo	oratory - NATA Si	te # 20794														
External Labo	ratory					Х										
TP9_0.5-0.6	May 01, 2013		Soil	S13-My03377	Х			Х		Х						
TP10_0.0-0.1	May 01, 2013		Soil	S13-My03378	Х			Х		Х						
TP10_0.4-0.5	May 01, 2013		Soil	S13-My03379			Х									
TP11_0.0-0.1	May 01, 2013		Soil	S13-My03380	Х			Х		Х						
TP11_0.4-0.5	May 01, 2013		Soil	S13-My03381			Х									
TP12_0.0-0.1	May 01, 2013		Soil	S13-My03382	Χ			Х		Х						
TP12_0.4-0.5	May 01, 2013		Soil	S13-My03383			Х									
TP13_0.0-0.1	May 01, 2013		Soil	S13-My03384	Χ			Х		Х						
TP13_0.2-0.3	May 01, 2013		Soil	S13-My03385			Х									
TP14_0.0-0.1	May 01, 2013		Soil	S13-My03386	Χ			Х		Х						
TP14_0.4-0.5	May 01, 2013		Soil	S13-My03387			Х									

Date Reported:May 09, 2013 Date Reported:May 09, 2013 Report Number: 377797-W

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au

web: www.mgtlabmark.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook

NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA Client Job No.:

Order No.:

Report #: 377797

Phone: 02 4016 2300 Fax: 02 4016 2380

Contact Name: Damien Hendrickx

Received:

Priority:

Due:

Eurofins | mgt Client Manager: Jean Heng

May 10, 2013

5 Day

May 3, 2013 12:30 PM

		Sample Detail			% Moisture	Asbestos	HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laboratory wh	nere analysis is c	onducted														
Melbourne La	boratory - NATA	Site # 1254 & 14	271													
Sydney Labor	atory - NATA Site	# 18217			Х		Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х
Brisbane Labo	oratory - NATA Si	te # 20794														
External Labo	ratory					Х										
TP15_0.0-0.1	May 01, 2013		Soil	S13-My03388	Х			Х		Х						
TP15_0.9-1.0	May 01, 2013		Soil	S13-My03389			Х									
SS4	May 01, 2013		Soil	S13-My03390	Χ			Х		Х						
SS5	May 01, 2013		Soil	S13-My03391	Χ			Х		Χ						
SS6	May 01, 2013		Soil	S13-My03392	Χ			Х		Χ						
SS7	May 01, 2013		Soil	S13-My03393	Χ			Х		Х						
SS8	May 01, 2013		Soil	S13-My03394	Χ			Х		Х						
SS9	May 01, 2013		Soil	S13-My03395	Χ			Х		Х						
SS10	May 01, 2013		Soil	S13-My03396	Χ			Х		Х						
SS11	May 01, 2013		Soil	S13-My03397	Χ			Х		Х						
SS12	May 01, 2013		Soil	S13-My03398	Χ			Х		Χ						

Page 5 of 13

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

web: www.mgtlabmark.com.au

Company Name: Coffey Environments P/L N'castle Address:

Lot 101, 19 Warabrook Boulevard

Warabrook NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA Client Job No.:

Order No.:

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au

Report #: 377797

Phone: 02 4016 2300 Fax:

Contact Name: 02 4016 2380 Damien Hendrickx

Due:

Received:

Priority:

Eurofins | mgt Client Manager: Jean Heng

May 10, 2013

5 Day

May 3, 2013 12:30 PM

	Sampl	le Detail		% Moisture	Asbestos	HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laboratory	y where analysis is conducte	ed													
Melbourne	Laboratory - NATA Site # 1	254 & 14271													
Sydney La	boratory - NATA Site # 1821	7		Х		Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х
Brisbane I	_aboratory - NATA Site # 207	794													
External L	aboratory	1			Х										
SS13	May 01, 2013	Soil	S13-My03399	Х			Х		Х						
SS14	May 01, 2013	Soil	S13-My03400	Х			Х		Х						
SS15	May 01, 2013	Soil	S13-My03401	Х			Х		Х						Ш
SS16	May 01, 2013	Soil	S13-My03402	Х			Х		Х						
SS17	May 01, 2013	Soil	S13-My03403	Х			Х		Х						
QC2	May 01, 2013	Water	S13-My03404					Х			Х				
QC3	May 01, 2013	Water	S13-My03405							Х	Х				Х
QC4	May 01, 2013	Soil	S13-My03406	Х			Х		Х						
QC6	May 01, 2013	Soil	S13-My03407	Х			Х		Х						
QC8	May 01, 2013	Soil	S13-My03408	Х			Х		Х						
QC9	May 01, 2013	Soil	S13-My03409	Х			Х		Х						

Company Name:

Address:

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

Coffey Environments P/L N'castle Lot 101, 19 Warabrook Boulevard

Warabrook NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA Client Job No.:

Order No.: Report #:

Phone:

Fax:

377797

02 4016 2300 02 4016 2380

May 3, 2013 12:30 PM Due: May 10, 2013

Priority: 5 Day

Contact Name: Damien Hendrickx

Eurofins | mgt Client Manager: Jean Heng

	Samp	le Detail		% Moisture	Asbestos	HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M8	Metals M8 filtered	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laboratory	where analysis is conduct	ed													
Melbourne	Laboratory - NATA Site # 1	254 & 14271													
Sydney La	boratory - NATA Site # 182	17		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Brisbane L	aboratory - NATA Site # 20	794													
External L	aboratory				Х										
SS18	May 02, 2013	Soil	S13-My03410	Х	Х				Х		Х	Х	Х	Х	Х
SS19	May 02, 2013	Soil	S13-My03411	Х	Х				Х					Х	
SS20	May 02, 2013	Soil	S13-My03412	Х	Х				Х		Х	Х	Х	Х	Х
SS21	May 02, 2013	Soil	S13-My03413	Х	Х				Х					Х	
SS22	May 02, 2013	Soil	S13-My03414	Х	Х				Х		Х	Х	Х	Х	Х
SS23	May 02, 2013	Soil	S13-My03415	Х	Х				Х		Х			Х	Х
SS24	May 02, 2013	Soil	S13-My03416	Х	Х				Х					Х	
SS25	May 02, 2013	Soil	S13-My03417	Х	Х				Х		Х			Х	Х
SS26	May 02, 2013	Soil	S13-My03418	Х	Х				Х		Х	Х	Х	Х	Х
SS27	May 02, 2013	Soil	S13-My03419	Х	Х				Х		Х			Х	Х
SS28	May 02, 2013	Soil	S13-My03420	Х	Χ				Χ					Х	

Date Reported:May 09, 2013 Date Reported:May 09, 2013 Report Number: 377797-W

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

Report #:

Phone:

Fax:

377797

02 4016 2300

02 4016 2380

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook

NSW 2304

BELLBIRD HEIGHTS ENAUWARA04363AA Client Job No.:

Order No.: Received:

> Due: May 10, 2013

Priority: 5 Day

Contact Name: Damien Hendrickx

Eurofins | mgt Client Manager: Jean Heng

May 3, 2013 12:30 PM

		Sample Detail			% Moisture	Asbestos	HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M8	Metals M8 filtered	ВТЕХ	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)	Total Recoverable Hydrocarbons
Laboratory	where analysis is c	onducted														
Melbourne	Laboratory - NATA	Site # 1254 & 14	271													
Sydney La	boratory - NATA Site	# 18217			Χ		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane L	_aboratory - NATA Si	te # 20794														
External La	aboratory					Χ										
SS29	May 02, 2013		Soil	S13-My03421	Χ	Х				Х		Х			Х	Х
SS30	May 02, 2013		Soil	S13-My03422	Χ	Х				Х		Х	Х	Х	Х	Х
SS31	May 02, 2013		Soil	S13-My03423	Χ	Х				Х		Х			Х	Х
QC11	May 02, 2013		Soil	S13-My03424	Χ					Х		Х			Х	Х
ASF1	May 02, 2013		Other	S13-My03425		Χ										

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram mg/l: milligrams per litre
ug/l: micrograms per litre ppm: Parts per million
ppb: Parts per billion %: Percentage
ora/100ml: Organisms per 100 millilitres NTU: Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 377797-W

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fra Petroleum Hydrocarbons (TPH)	actions E004				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX E029/E016 BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - Draft 2010 NEF LTM-ORG2010	PM Fractions LM-				
Naphthalene	mg/L	< 0.02	0.02	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Metals M8 filtered E020/E030 Filtered Metals in Wa	ater & E026 Mercury				
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0001	0.0001	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fra Petroleum Hydrocarbons (TPH)	actions E004				
TRH C6-C9	%	98	70-130	Pass	
TRH C10-C14	%	84	70-130	Pass	
LCS - % Recovery					
BTEX E029/E016 BTEX					
Benzene	%	116	70-130	Pass	
Toluene	%	108	70-130	Pass	
Ethylbenzene	%	110	70-130	Pass	
m&p-Xylenes	%	107	70-130	Pass	
o-Xylene	%	110	70-130	Pass	
Xylenes - Total	%	108	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - Draft 2010 NEF LTM-ORG2010	PM Fractions LM-				
Naphthalene	%	129	70-130	Pass	
TRH C6-C10	%	110	70-130	Pass	
TRH >C10-C16	%	89	70-130	Pass	
LCS - % Recovery		·			
Metals M8 filtered E020/E030 Filtered Metals in Wa	ater & E026 Mercurv				
Arsenic (filtered)	%	96	70-130	Pass	

	11186						Acceptance	Pass	Qualifying
Test			Units	Result 1			Limits	Limits	Code
Cadmium (filtered)			%	101			70-130	Pass	
Chromium (filtered)			%	98			70-130	Pass	
Copper (filtered)			%	103			70-130	Pass	
Lead (filtered)			%	106			70-130	Pass	
Nickel (filtered)			%	97			70-130	Pass	
Zinc (filtered)		1	%	99			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery					, ,				
BTEX		_		Result 1					
Benzene	S13-My04623	NCP	%	112			70-130	Pass	
Toluene	S13-My04623	NCP	%	108			70-130	Pass	
Ethylbenzene	S13-My04623	NCP	%	108			70-130	Pass	
m&p-Xylenes	S13-My04623	NCP	%	105			70-130	Pass	
o-Xylene	S13-My04623	NCP	%	108			70-130	Pass	
Xylenes - Total	S13-My04623	NCP	%	106			70-130	Pass	
Spike - % Recovery					1				
Total Recoverable Hydrocarbons	- 1999 NEPM Fract			Result 1					
TRH C6-C9	S13-My04623	NCP	%	95			70-130	Pass	
TRH C10-C14	S13-My01765	NCP	%	84			70-130	Pass	
Spike - % Recovery					1				
Total Recoverable Hydrocarbons				Result 1					
Naphthalene	S13-My04623	NCP	%	117			70-130	Pass	
TRH C6-C10	S13-My04623	NCP	%	105			70-130	Pass	
TRH >C10-C16	S13-My01765	NCP	%	88			70-130	Pass	
Spike - % Recovery				T					
Metals M8 filtered				Result 1					
Arsenic (filtered)	S13-My03580	NCP	%	100			70-130	Pass	
Cadmium (filtered)	S13-My03580	NCP	%	104			70-130	Pass	
Chromium (filtered)	S13-My03580	NCP	%	98			70-130	Pass	
Copper (filtered)	S13-My03580	NCP	%	98			70-130	Pass	
Lead (filtered)	S13-My03580	NCP	%	102			70-130	Pass	
Nickel (filtered)	S13-My03580	NCP	%	93			70-130	Pass	
Zinc (filtered)	S13-My03580	NCP	%	100			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					· ·				
BTEX	<u> </u>			Result 1	Result 2	RPD			
Benzene	S13-My04613	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S13-My04613	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S13-My04613	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S13-My04613	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S13-My04613	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S13-My04613	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate				T					
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD		_	
TRH C6-C9	S13-My04613	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	S13-My03215	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S13-My03215	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S13-My03215	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate		_		T _		:			
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
Naphthalene	S13-My04613	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C6-C10	S13-My04613	NCP NCP	mg/L	< 0.02 < 0.02	< 0.02	<1	30% 30%	Pass Pass	
TRH C6-C10 less BTEX (F1)	S13-My04613		mg/L		< 0.02	<1			

Duplicate									
Total Recoverable Hydroca	rbons - Draft 2010 NEPM	Fraction	s	Result 1	Result 2	RPD			
TRH >C10-C16	S13-My03215	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S13-My03215	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S13-My03215	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Metals M8 filtered				Result 1	Result 2	RPD			
Arsenic (filtered)	S13-My02958	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	S13-My02958	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Chromium (filtered)	S13-My02958	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S13-My02958	NCP	mg/L	0.0011	0.0011	3.0	30%	Pass	
Lead (filtered)	S13-My02958	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Nickel (filtered)	S13-My02958	NCP	mg/L	0.0025	0.0025	1.0	30%	Pass	
Zinc (filtered)	S13-My02958	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Report Number: 377797-W

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	Yes

Qualifier Codes/Comments

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised By

N02

Jean Heng Client Services

Laura Schofield Senior Analyst-Volatile (NSW) Ryan Hamilton Senior Analyst-Organic (NSW) James Norford Senior Analyst-Metal (NSW)

Dr. Bob Symons

Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 377797-W

AUSTRALIAN SAFER ENVIRONMENT & TECHNOLOGY PTY LTD

ABN 36 088 095 112

Our ref: ASET33182/36362 / 1 - 15

Your ref: 377797

NATA Accreditation No: 14484

8 May 2013

Eurofins | mgt Unit F3, 16 Mars Road Lane Cove NSW 2066

Attn: Dr Robert Symons

Laboratory & Technical Manager

Dear Robert

Asbestos Identification

This report presents the results of fifteen samples, forwarded by Eurofins | mgt on 6 May 2013, for analysis for asbestos.

- 1.Introduction: Fifteen samples forwarded were examined and analysed for the presence of asbestos.
- 2. Methods: The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining method (Safer Environment Method 1.)
- 3. Results: Sample No. 1. ASET33182 / 36362 / 1. SS18 My03410

Approx dimensions 4.0 cm x 3.5 cm x 2.1 cm

The sample consisted of a mixture of soil, stones, plant matter and fragments of plaster.

No asbestos detected.

Sample No. 2. ASET33182 / 36362 / 2. SS19 - My03411

Approx dimensions 6.1 cm x 6.0 cm x 2.3 cm

The sample consisted of a mixture of soil, stones, plant matter and fragments of plaster.

No asbestos detected.

Sample No. 3. ASET33182 / 36362 / 3. SS20 - My03412

Approx dimensions 7.0 cm x 6.5 cm x 3.2 cm

The sample consisted of a mixture of soil, stones, plant matter and fragments of plaster.

No asbestos detected.

Sample No. 4. ASET33182 / 36362 / 4. SS21 - My03413

Approx dimensions 5.0 cm x 4.0 cm x 1.5 cm

The sample consisted of a mixture of soil, stones, plant matter and fragments of plaster.

No asbestos detected.

SUITE 710 / 90 GEORGE STREET, HORNSBY NSW 2077 – P.O. BOX 1644 HORNSBY WESTFIELD NSW 1635 PHONE: (02) 99872183 FAX: (02)99872151 EMAIL: aset@bigpond.net.au WEBSITE: www.Ausset.com.au

Sample No. 5. ASET33182 / 36362 / 5. SS22 - My03414

Approx dimensions 6.0 cm x 5.5 cm x 3.2 cm

The sample consisted of a mixture of soil, stones, plant matter and fragments of plaster.

No asbestos detected.

Sample No. 6. ASET33182 / 36362 / 6. SS23 - My03415

Approx dimensions 5.0 cm x 4.6 cm x 2.6 cm

The sample consisted of a mixture of soil, stones, plant matter and fragments of plaster.

No asbestos detected.

Sample No. 7. ASET33182 / 36362 / 7. SS24 - My03416

Approx dimensions 5.4 cm x 5.2 cm x 3.1 cm

The sample consisted of a mixture of soil, stones, plant matter and fragments of plaster.

No asbestos detected.

Sample No. 8. ASET33182 / 36362 / 8. SS25 - My03417

Approx dimensions 6.0 cm x 6.0 cm x 3.1 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster and cement

No asbestos detected.

Sample No. 9. ASET33182 / 36362 / 9. SS26 - My03418

Approx dimensions 5.8 cm x 5.5 cm x 2.8 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster and brick.

No asbestos detected.

Sample No. 10. ASET33182 / 36362 / 10. SS27 - My03419

Approx dimensions 6.0 cm x 5.5 cm x 3.1 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster, cement like material and brick like material.

No asbestos detected.

Sample No. 11. ASET33182 / 36362 / 11. SS28 - My03420

Approx dimensions 6.5 cm x 6.5 cm x 3.5 cm

The sample consisted of a mixture of soil, stones, plant matter and fragments of plaster.

No asbestos detected.

Sample No. 12. ASET33182 / 36362 / 12. SS29 - My03421

Approx dimensions 5.8 cm x 5.6 cm x 3.4 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster and brick.

No asbestos detected.

Sample No. 13. ASET33182 / 36362 / 13. SS30 - My03422

Approx dimensions 6.0 cm x 5.6 cm x 3.3 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster, fibre plaster cement material containing organic fibres and brick.

No asbestos detected.

Sample No. 14. ASET33182 / 36362 / 14. SS31 - My03423

Approx dimensions 6.0 cm x 5.5 cm x 2.9 cm

The sample consisted of a mixture of soil, stones, plant matter, fragments of plaster and cement.

No asbestos detected.

Sample No. 15. ASET33182 / 36362 / 15. ASF1 - My03425

Approx dimensions 5.0 cm x 4.0 cm x 0.35 cm

The sample consisted of a soft fibrous material of organic fibres.

No asbestos detected.

Analysed and reported by,

Nisansala Maddage. BSc(Hons)

Environmental Scientist/Approved Identifier

Mahen De Silva . BSc. MSc. Grad Dip (Occ Hyg) Occupational Hygienist / Approved Signatory NATA
WORLD RECOGNISED
ACCREDITATION

This document is issued in accordance with NATA's Accreditation requirements. Accredited for compliance with ISO/IEC 17025.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 90080

Client:

Coffey Environment (Warabrook)

Lot 101, 19 Warabrook Blvd Warabrook NSW 2304

Attention: D Hendricks

Sample log in details:

Your Reference: ENAUWARA04363AA, Bellbird Heights

No. of samples: 3 Soils

Date samples received / completed instructions received 06/05/2013 / 06/05/2013

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 13/05/13 / 9/05/13

Date of Preliminary Report: Not issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Rhian Morgan

Reporting Supervisor Inorganics Supervisor

Envirolab Reference: 90080 Revision No: R 00

Acid Extractable metals in soil					
Our Reference:	UNITS	90080-1	90080-2	90080-3	90080-4
Your Reference		QC5	QC7	QC10	QC5
					TRIPLICATE
Date Sampled		1/05/2013	1/05/2013	1/05/2013	1/05/2013
Type of sample		Soil	Soil	Soil	Soil
Date digested	-	07/05/2013	07/05/2013	07/05/2013	07/05/2013
Date analysed	-	07/05/2013	07/05/2013	07/05/2013	07/05/2013
Arsenic	mg/kg	5	<4	<4	4
Cadmium	mg/kg	<0.4	0.5	<0.4	<0.4
Chromium	mg/kg	36	39	18	25
Copper	mg/kg	20	17	<1	22
Lead	mg/kg	33	47	6	28
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	18	13	6	23
Zinc	mg/kg	24	260	5	31

Envirolab Reference: 90080 Revision No: R 00

Miscellaneous Inorg - soil				
Our Reference:	UNITS	90080-1	90080-2	90080-3
Your Reference		QC5	QC7	QC10
Date Sampled		1/05/2013	1/05/2013	1/05/2013
Type of sample		Soil	Soil	Soil
Date prepared	-	07/05/2013	07/05/2013	07/05/2013
Date analysed	-	08/05/2213	08/05/2213	08/05/2213
pH 1:5 soil:water	pH Units	4.8	7.0	5.7

Envirolab Reference: 90080 Page 3 of 7 Revision No: R 00

Moisture				
Our Reference:	UNITS	90080-1	90080-2	90080-3
Your Reference		QC5	QC7	QC10
Date Sampled		1/05/2013	1/05/2013	1/05/2013
Type of sample		Soil	Soil	Soil
Date prepared	-	07/05/2013	07/05/2013	07/05/2013
Date analysed	-	08/05/2013	08/05/2013	08/05/2013
Moisture	%	12	19	9.3

Envirolab Reference: 90080 Page 4 of 7 Revision No: R 00

Method ID	Methodology Summary
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 22nd ED, 4500-H+.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 4 hours.

Envirolab Reference: 90080 Revision No: R 00

Client Reference: ENAUWARA04363AA, Bellbird Heights PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Base II Duplicate II %RPD Acid Extractable metals in soil Date digested 07/05/2 90080-1 07/05/2013 | 07/05/2013 LCS-1 07/05/2013 013 Date analysed 07/05/2 90080-1 07/05/2013 || 07/05/2013 LCS-1 07/05/2013 013 Metals-020 Arsenic mg/kg 4 <4 90080-1 5 || <4 LCS-1 92% **ICP-AES** Metals-020 Cadmium mg/kg 0.4 < 0.4 90080-1 <0.4||<0.4 LCS-1 95% **ICP-AES** Chromium Metals-020 90080-1 36 | 22 | RPD: 48 LCS-1 98% mg/kg 1 <1 **ICP-AES** Metals-020 Copper mg/kg 90080-1 20 || 20 || RPD: 0 LCS-1 101% **ICP-AES** Lead Metals-020 90080-1 33 || 30 || RPD: 10 LCS-1 93% mg/kg 1 <1 **ICP-AES** Metals-021 LCS-1 Mercury <0.1 90080-1 <0.1 || <0.1 99% mg/kg 0.1 CV-AAS Nickel Metals-020 90080-1 18||26||RPD:36 LCS-1 98% mg/kg <1 ICP-AES Metals-020 Zinc 1 90080-1 24 || 29 || RPD: 19 LCS-1 95% mg/kg <1 ICP-AES QUALITYCONTROL PQL **UNITS** METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Miscellaneous Inorg - soil Base II Duplicate II % RPD 08/05/2 LCS-1 Date prepared [NT] [NT] 08/05/2013 013 08/05/2 Date analysed [NT] [NT] LCS-1 08/05/2013 013 LCS-1 102% pH 1:5 soil:water pH Units Inorg-001 [NT] [NT] [NT] QUALITYCONTROL UNITS Blank PQL METHOD Moisture Date prepared [NT] Date analysed [NT] Moisture % 0.1 Inorg-008 [NT] QUALITYCONTROL **UNITS** Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Acid Extractable metals in Base + Duplicate + %RPD soil Date digested [NT] [NT] 90080-2 07/05/2013 Date analysed [NT] [NT] 90080-2 07/05/2013 Arsenic [NT] [NT] 90080-2 86% mg/kg Cadmium [NT] 90080-2 88% mg/kg [NT] Chromium [NT] [NT] 90080-2 85% mg/kg Copper mg/kg [NT] [NT] 90080-2 109% Lead mg/kg [NT] [NT] 90080-2 112% Mercury [NT] [NT] 90080-2 105% mg/kg

Envirolab Reference: 90080 Revision No: R 00

mg/kg

mg/kg

[NT]

[NT]

[NT]

[NT]

Nickel

Zinc

94%

#

90080-2

90080-2

Report Comments:

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteriae has been exceeded for 90080-1 for Cr. Therefore a triplicate result has been issued as laboratory sample number 90080-4.

Acid Extractable Metals in Soil: # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Envirolab Reference: 90080 Page 7 of 7

Revision No: R 00

Page ____of ___ 103127

	3	Consign	ing Office:	war	abvok.	a a								_		
coff	environments SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE FALLOW AND ADDITIONAL AND ADDITIONAL ADDITIONA	Report	Results to:	D. He	ndrick	×	Mobile				Eı	nail: /	an	ipo	Hen	drill coff
	SOCIAL AND SAFETY PERFORMANCE	≣ Invoice:	to: 1			11	Phone:	0240	0162	300	D EI	nail:	1	101/2	71111	// @coff
							T		manufacture of		ysis Rec		-			
Project Nan	ne: Bellhod Height Laboratory:	ma	T						-/	1	17	17	7	11	77	777
Sampler's N	ne: Bellhvd Height Laboratory: Jame: L 56+7 Project Mar	nager: ().Her	aduci	KY				//	//	//	//	//.	//	//	//
Special Inst							1	/	//	//	//	//	//	//	//	
							1	//	//	//	//	//	//	//	///	
.ab No.	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	1/	//	//	//	//	//	//	//		NOTES
	OSI	15.4.13	AM	SOU	glass, jav j		1 1	TT								
	05.1 05.2	11			100									\top		
(CSI	14	+								T					
5	SS 7	169.13	Am						1							
		1	1											\top		
13	3.3				A.											
T	PI-0-0-0.1															
T	P1-0-0-0.1 P1-0-9-0.5										11	1				
	PI-0.9-1.0							11						\Box		
	P1-1.9-2.6											1 1				
17.	01_29-30			1				11	1						-	
1	P1-3.9-4.0										11	11	_	11		
177	P2-0-0-0.1							11				+				
17	02-0-4-0.5							11			11					
77	02-6.9-1.0 PZ-2.2-2.3							11								
17	17-7.7-2.3						\Box	1						11		
7	P3-0-0-0-1												_			
1	P3_0.9-1.0	97	pe	W	*							11				
	RELINQUISHED BY				REC	EIVED BY					Sample	Receipt	Advice	: (Lab Us	se Only)	
lame:	Date:	-	Name:	ischotie	ld		Date:	7/4/1	7		4			Good Co		0
offey Envir	ronments Time:		Compan	y: ewot	inslingt			3:05						Proper 0		□,
lame:	Date:	-	Name:	Searo			Date:	17/4/	_		4			erly Chill		
Company:	Time:		Compan	v: Eurofin	> rugt		Time:	9.				f/Batch				(=c
'Container S - Sulphur	Type & Preservation Codes: P - Plastic, G- Glass Bott ric Acid Preserved, I - Ice, ST - Sodium Thiosulfate, Ni	ile, J - Glass P - No Pres	Jar, V-Via	l, Z - Ziplock Ba	ag, N - Nitric Acid Pre	eserved, C -				ed,	1			# 3	7607	0

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST Page Z of __ 103128

			THE RESERVE OF THE PERSON NAMED IN COLUMN 1									_					
coffey environments SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE	Consigni	ng Office:	DAVE	abrook		14.19					- "	n	2011	20	Un	ol all	tra
SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE	Invoices		U. ME	ganca	<i>Y</i>	Mobile		1016	52.7	00	Email	u	miç	11-	TIEN	anu	Coffey.co@coffey.co
roject No: EUD2363 AA. Task No:						T	0	7070		lysis R			tion	_	-		@coney.co
roject No: EUO3363 AA Task No: roject Name: Belby A Height Laboratory: ampler's Name: Betz Project Mana	mo	T						_/	7	//	7	7	//	7	77	7	//
ampler's Name: LBE+2 Project Mana	ger: D	Hen	duck	x				//	//	//	//	//	//	//	//	//	
pecial Instructions:	- 52						/	//	//	//	//	//	//	//	//		
	Sample		Matrix	Container Type &	T-A-T	/		//		//	/	//	//	/	//	<u></u>	
ab No. Sample ID	Date	Time	(Soiletc)	Preservative*	(specify)	V_{2}	//	//	//	//	/	//	//	/		NO	OTES
1P4-00-0.1 TP4-04-05 TP4-14-15 TP5-00-01 TP5-04-05	16.4B	PM	soul	glas sort	570												
TP4-04-05		-		TCP		\vdash			-	_	Н	4	-				
TP4-1.4-1.5	-						-	\vdash	\vdash	-		_	-	-			
TPS - 0.0 - 0. 1	1					-	-	-	+		\vdash	+	+	-			
0-01	F	-	*	*	*												
											Ш		-	<u> </u>			
						\vdash	-		\vdash	-	\vdash	+	+	-			
						\vdash	+-		\vdash			+	+	-			
						+	+	-	+	_		+	+	+			
					05	\vdash								1			
										1.8							
														1 8			
					-		4		\sqcup			4	-				
						\vdash	+	-	+	_		-	-		_		
RELINQUISHED BY		T		REG	CEIVED BY			_		Sam	ple Re	ceint A	Advices	(Lab	Use Only	,	
lame: Date:	-	Name:	Lischotte			Date:	1714	112		→.					Condition		
offey Environments Time:			y: euroffe			Time:	3:	-		- 10					r Order		EJ
lame: Date:	-	Name:	Searo			Date:		13		Sam	ples R	eceived	d Prope	erly Ch	nilled		D
ompany: Time:		Compar	iv: Evofi	MMT		Time:	0	1:30		Lab.	Ref/B	atch No		07	0 - 1		
Container Type & Preservation Codes: P - Plastic, G- Glass Bottl					eserved, C -	Hydroch	loric Aci	d Preserv	red,					#	376	010	

376070

Page _____ = ____

coffe	SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE	Consigning Report Re	g Office: UNON isults to: D ME,	nduckx	Mobile Phone: £24016230	Email: Danien-Henon/Pacoffey.c
omblers vous Lead Jamos V	WIWARADAJAR A JASK NOT RE COLL VI AR SCHOOL EL CETZ VI ONS: X 5TO 8	mit				alysis Request Section
.o// de	Sample ID	Sample Date	Matrix Time (Soiletc)	Container Type & T-A Preservative* (spe	1. V. X. A. Y ' Y ' WY !	NOTES
03 03 68	7	15 4 15 .	AM SOU	glass av + ST		
78/-	-00-0.1 -09-0.5 -4-0.5 -19-20 -29-30					neup
170, 1792 1792	- 2.7-30 - 3.9-4.0 - 0.0-0.1 - 0.4-0.5 -6.9-10					HOLVO
TP2	2-22-2.3 3-0-0-0-1 3-0.9-1.0	হুন	d B	*		MOUD
	RELINQUISHED BY		505 -	RECEIVED		Sample Receipt Advice: (Lab Use Only)
ne: 1	Set Date 18 4 11) 7	Name: Sear-O	of his mat	Date: 18/14/13	All Samples Recieved in Good Condition
	Date.	→		112 12	Time 2:30	Samples Received Properly Chilled
0.00	Time:		Company:		Time.	Lab. Ref/Batch No.

environments specialists in environmental, social and safety performance	Consignin Report Re Invoices t	eg Office: esults to: o:	D. H.	abrook nunck		Mobile: Phone: 0240/62	300 Emall.	_HGN/N/C/Qcoffey.cor @coffey.cor
Samo una Norda Special Instructions:	ogen: D	THEP	chack	×			nalysis Request Section	
Lab No. Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)			NOTES
TP4-0.0-01	16.4.13	PM	SOU	glas art	STO			
		HT						
DELINOLISCUED DV				95/	CEIVED OV		Comple Session Advises (Italy	Live Oaks)
RELINQUISHED BY Name Date: Coffey Environments Time:	7	Name: Compar	Spano.		CEIVED BY	Date: 18/41/3 Time: 2.30	Sample Receipt Advice: (Lat All Samples Recieved in Good All Documentation is in Prop	d Condition
Name Date. Conigany: Time:	->			9,		Date: Time:	Samples Received Properly C Lab. Ref/Batch No	hilled

Page <u>7</u> of <u>7</u> 107852

Project No: EAProject Name: Sampler's Name Special Instruct	Sample ID P1-0.0-0.1 P1-0.9-0.5 P1-1.9-2.0 P1-2.9-3.0 P1-3.9-9.0	tory: VV (Manager: (Sample Date	iT	1 (Container Type & Preservative*	T-A-T (specify)	Phone	le: e: <i>0Z</i>	1016		Ema	st Section		@coffey.com
Project No: EAProject Name: Sampler's Name Special Instruct	Sample ID $P1 - 0.9 - 0.5$ $P1 - 1.9 - 2.0$ $P1 - 3.9 - 9.0$	tory: VV (Manager: (Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	Phone	e: 024	1016		Ema	10		@coffey.cor
Project No: EAProject Name: Sampler's Name Special Instruct	Sample ID $P1 - 0.9 - 0.5$ $P1 - 1.9 - 2.0$ $P1 - 3.9 - 9.0$	tory: VV (Manager: (Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	(specify)				Analy	ysis Reque	st Section		
Sampler's Nam Special Instruct	re: $/$ SeF_{2} J Project ctions Sample ID $P1 - 0.0 - 0.1$ $P1 - 0.9 - 0.5$ $P1 - 1.9 - 2.0$ $P1 - 2.9 - 3.0$ $P1 - 3.9 - 9.0$	Manager: Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	(specify)								
Sampler's Nam Special Instruct	re: $/$ SeF_{2} J Project ctions Sample ID $P1 - 0.0 - 0.1$ $P1 - 0.9 - 0.5$ $P1 - 1.9 - 2.0$ $P1 - 2.9 - 3.0$ $P1 - 3.9 - 9.0$	Manager: Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	(specify)								
Lab No. The Tree Tree Tree Tree Tree Tree Tree T	Sample ID P1-0.0-0.1 P1-0.9-0.5 P1-1.9-2.0 P1-2.9-3.0 P1-3.9-9.0	Date		(Soiletc)	Preservative*	(specify)								
71 TI TP TP	P1-0.0-0.1 P1-0.9-0.5 P1-1.9-2.0 P1-2.9-3.0	Date		(Soiletc)	Preservative*	(specify)	4		//					
71 TI TP TP	P1-0.0-0.1 P1-0.9-0.5 P1-1.9-2.0 P1-2.9-3.0	Date		(Soiletc)	Preservative*	(specify)		33	//		///		///	
TI TP TP	P1-0.9-0.5 P1-1.9-2.0 P1-2.9-3.0 P1-3.9-9.0	15 4.19	Am	sou	bag I	000			1				((A	
TP	21-1.9-2.0 21-2.9-3.0 21-3.9-4.0		-1-	1		STO							1	P 17985
TP	21-1.9-2.0 21-2.9-3.0 21-3.9-4.0			1 1	0,	1								86
TP	1-3.9-4.0													67
TP	1-3.9-4.0													88 5 4
					1									894
	2-0.0-0.1							/						90
	2-0.4-0.5													91
TP	2-0.9-1.0													92
177	22-0.9-1.0				15									93
	03-0-0-1													94
Tr	03_0.9-10				1									95
TP	04-0-0-1													96
Tr	29-0-9-0-5							/						97
TP	94-619-1.5							/						98
TX	050-0-01							\						198003 99
170	25-04-05	*	*											18000
S	31	18-4.1	,											01
	S 2	-	100	-	-	*								02
	RELINQUISHED BY					EIVED BY					Sample R	eceipt Advi	ce: (Lab Use Or	nly)
lame: t-Betz Date:		Name:	Alike hell	Murphy		Date:	23	4-13		All Sample	es Recieved	in Good Condit	tion 🖪	
offey Environi				14: Enroli	ns I mg f		Time:	9.150	m		All Docum	entation is	in Proper Orde	r 🖸
Vame:	Date:	-	Name:		3		Date:				Samples R	eceived Pro	operly Chilled	1 (2°C
Company:	Time:		Compar	ıy:			Time:				Lab. Ref/E	atch No.		

Page <u>7 of 2</u> 107853

	- A .	Consig	ning Office	e: W 01-	Consigning Office: Wa-abnock												
COT	environme specialists in envisocial and safety	INTS Report	t Results to:				Mobil	ile:				En	nail:				@coffey.cor
	SOCIAL AND SAFETY	Y PERFORMANCE Invoice	es to:				Phone	e:				En	nail:				@coffey.cor
Project N	io: EUOG363 AA lame: BOIIbird s Name: L. Betz	I BOK INO.									Analy	sis Req	uest Se	ection	. 1111		
Project Na	ame: 50/16/10	Laboratory: M	GT				41			7	7/	7,	7/	1	//	///	7//
Sampler's	Name: L. Opto	Project Manager:) M1	endn	elop	/				5/	//	//,	//	//	//	///	
	structions:							/				//	//	/	//	///	
		Sample	1	Matrix	Container Type &	1	1,	1	X/	//	//	//	//	//	//		
Lab No.	Sample ID	Date		-		(specify)	//	72	//	//	//	//	//	//	//		NOTES
	553	16.4.1	13 Arr	n soul	plashi bay	STD											03
					_i	4											
							\perp		!								- /:
	/I=								'								
							\perp		'								
	- W W W					1	\perp				!						
									\perp		$\perp \perp \rfloor$						
		-						-									
						1	1		\perp	4	\perp	Щ_					
						1		-									
						1					\perp		\perp	-			
	THE STATE OF THE S					1		-		1							4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						1			\perp				\perp				
-						4											
								4									
-			1														
	THE REPORT OF THE PARTY OF THE					1	\bot										
	RELINQUISHED BY						Щ.			$oldsymbol{\perp}$							
Name:			S Name	e: (HPLSTE		CEIVED BY		Mal	110		-					Use Only)	
	Name: Date: 7 Coffey Environments Time:			pany: Emof	A. C. C. C. C. C. C. C. C. C. C. C. C. C.			1339				All Samp All Docu				l Condition er Order	
Name:	Date:		Name:		- U		Date:				$\overline{}$	Samples					B 8°C
Company:	Time:		Comr	pany:			Time:				- 1	Lab. Ref					

į	\wedge	6
ļ	U	C

Page _____ of 4 103130

	<u> 5</u>		Consigni	ng Office:	wava	brook		- X-										
CO	пеу 🕶	environments specialists in environmental, social and safety performance	Report R	esults to:	D. Henc	duckx/1.	setz.	Mobile	:			Email: Damien-Henduc Coffey.co						
		SOCIAL AND SAFETY PERFORMANCE	Invoices	to: D	MIn	dnekx		Phone:	1290	2160	230	O Er	mail:				@0	offey.cor
riojecti	" VNJUVVII	-710930 SA- 185K NO.									Anal	ysis Req	uest S	ection				
Project I	Name: 6C//DIV	d Height Laboratory: etc Project Man	m	41.					/	//								
Sampler	's Name: [.	ete Project Man	ager:	Her	oduc	ky	1		//	//	//	//	//	//	//	//		
Special I	nstructions:	STD 8 heavy	1 m	cla	(5			14	//	//	//	//	//	///				
									16	7/	//	//	//	//	//	///		
Lab No.	Sa	mple ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	1/9	19	//	//	//	//	//	//	//	NOTES	
03567	TP6-0.	.0-0.1	15.13	AM	soul	glass Javi	STD	1	VI								***************************************	
(3)		1.4-0.5		1		Day FICE	-(-	1										
69																		
70		0-0-1										5				*		
71	TP7-0.	4-6-5						1										
72	TP7-1.	9-2-0										8						
13	TP8-0											Ÿ I			ijijij			
74	TP8-0.			1								V						
75	TP8-0	.9-1.0																
76	TP9-0							N										
77	TP9-0	.5-0.6																
7%									V									
79	TP10-0	.9-05																
\$6		0.0-0.1																
61	TP11-1	5.4-0.5																
82	TP12-0	0-0-1		_1_			1	M										
_53	TP12-0	0.4-65					1											
64	TP13-0	0.0-0.1	W	4	*	-12	1	/										
		RELINQUISHED BY		1			EIVED BY					Sample	e Receip	ot Advic	e: (Lab	Use Only)		
Name:	L.BEAZ	Date: 3.5-13.	-3		Andrew Bl	14.7		Date:	3 15/13			All Sam	iples Re	ecieved i	in Good	Condition		
Coffey E	nvironments	Time:	<u>_</u>		y: Eurofin	s mgt		Time:	10an			All Doc	umenta	ation is i	n Propei	r Order		
Name:		Date:	7	Name:	seans.			Date:	3/8/1	3		Sample	es Recei	ved Pro	perly Ch	illed		
Compan	y:	Time:		Compan	y: Gurpfin	as met		Time:	13.3	0		Lab. Re	ef/Batch	n No.	·k			
		ation Codes: P - Plastic, G- Glass Bott					eserved, C -	Hydroch	loric Acid	Preserve	ed,				#37	7797		

		Consigning Offi	ce: Marg	ihook.				100000			
CO	ffey environments SPECIALISTS IN ENVIRON SOCIAL AND SAFETY PER	S Report Results	to: C. Bet	book. 2/0.Her	Suckym	lobile:		Email:	amiei	7. Hench	1 (kg@coffey.com
		RFORMANCE Invoices to:		· ·	Pł	hone: 0240	1623c	7 Email:			@coffey.co
Project N	NO: ENNWARAO 43631A	fask No:					Anal	ysis Request S	ection		
Project N	Name: Boldhard Heights 's Name: L. Beh Aman	Laboratory: MGT					///	7///	7//	7//	//
Sampler'	s Name: L. Beh Aman	roject Manager: O-H	enduc	KX			///	////	///	////	
	nstructions:					12	5///	1///	///,	////	
						1/1	1//	1///	///	///	
Lab No.	Sample ID	Sample Date Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	\$\f\/	///	///	///	// _	NOTES
45 4b	TP13-0.2-0.3. TP14-0.0-0.1 TP14-0.4-0.5 TP15-0.6-0.1 TP15-0.9-1.0 SS4	15.13 Ar	nsod	19195 10-H	STO						
86	TP14-0.0-0.1			glass jart							
87	TP14-0.4-0.5										
89	TP15-0-6-0.1										
89	TP15-0.9-1.0										
90	554										
9(555										
92	556										4-4-4-1
93	SS 7									·	
94	SS8			11 12							
95	559										
95	SSIO	PM	1			N				*	
97	5,511										
98	6515										
99	5513				1						
0	SS14 SS15										
02	5516	4 +	+	+	200						
	RELINQUISHED BY			REC	EIVED BY			Sample Receip	ot Advice: (La	b Use Only)	
Name:	.Bet 2 Date: 3-5	7-15 → Nar	ne: Searo.		Da	ate: 3/5/13		All Samples Re	cieved in Goo	d Condition	
	nvironments Time:		npany: Gwof W		TiT	ime:	12.30	All Documenta			
Name:	Date:	→ Nam		0	Da	ate:		Samples Recei	ved Properly (Chilled	
Company	y: Time:	Con	npany:		Tir	ime:		Lab. Ref/Batch			
	ner Type & Preservation Codes: P - Plastic, G phuric Acid Preserved, I - Ice, ST - Sodium Thi				eserved, C - Hyc	drochloric Acid Pres	served,	1	#3	77797	

		Consigning C	Office: War	n homb						
CO	environments pecialists in environments social and safety pe	ts Report Resul	Its to: 1 Rets	O. Hendrick	Mobile:	Email: Dan	Hendulation Hendulation			
	SPECIALISTS IN ENVIRO SOCIAL AND SAFETY PE	ONMENTAL, ERFORMANCE Invoices to:	D Heno	O. Henducks	Phone: 024016230	Email:	@coffey.com			
Project N	10: ENNUMERO43631	Wask No: A & Colu	ok.		Ana	lysis Request Section				
Project N	lame: Bellhourd Height	Laboratory: MGT				//////	//////			
Sampler	s Name: Bellbird Meights	Project Manager: \mathcal{O}_i	Hendmi	65.	1 //6					
	nstructions:				1 / 4/9	///5///				
					1 /1/2/4/	14.21.				
Lab No.	Sample ID	Sample Date 7	Matrix 'ime (Soiletc)	Container Type & T-A-T Preservative* (specify)			NOTES			
63	SS17.	15.13 P	m sou	glass javino STI						
54	QC Z		wah	P2V mce						
65	QC3 QC4			glassian						
06			sou	glassian			l I			
.6.	ocs			1 1			A send to Envid			
67	0.6						troud to Course			
08	QC7 QC8						atsend to Envirola			
69	0009									
_0 <	0010						*send to Enviro			
07	S518	253					X OCTION TO ENVIRO			
1	5519	23			Merre					
12	5520				M					
15	SS21 SS22									
14	5522									
15	S523									
[6]	SZ		-1-1							
10]	SS25 RELINQUISHED BY	-	_	RECEIVED BY		G	(1-1-11-1-11-11-11-11-11-11-11-11-11-11-			
Name:	Date:	→	Name: Seazo.	KECEIVED BY	Date: 3/5/13	Sample Receipt Advice: All Samples Recieved in				
	nvironments Time:		Company: 4vof	Mr4-	Time: (2,30	All Documentation is in	_			
Name:	Date:	→		7	Date:	Samples Received Prope				
Compan		1	Company:		Time:	Lab. Ref/Batch No.				
*Contain	er Type & Preservation Codes: P - Plastic,			a M. Mitsio Agid December 2 Co.		**377797				
	huric Acid Preserved Lalce ST - Sodium 3				nyarochioric Acid Preserved,		01/14/			

Page 4 of 4 103133

					7										°-			001	00	
	er Sandranmanta	Consign	ing Office:	Nava	proof								(ami	en.					
CO	PECIALISTS IN ENVIRONMENTAL.	Report F	Results to:	LBE to	: 10.Ht	nduck)	Mobile	e:				En	nail: $D_{\!\scriptscriptstyle A}$	He	no	Incl	Ky	@cof	fey.com	
	SOCIAL AND SAFETY PERFORMANC	E Invoices	; to: <i>D</i>	HAR	relucie	Y	Phone	:: 02	40	162	30	O Em	nail:					@cof	fey.com	
Project	No: EW0436344 Task No:	heli	UNG	rk.								/sis Req		ection				-		
Project	Name: Bellbird Height aboratory	: MC	15						- 0	1	71	7,	77	7,	77	77	77	77		
Sample	r's Name: LBET Project Ma	Consigning Office: Www.book. Report Results to: LBE F / O. Herdrick. Invoices to: D. Hendrick. All Work. Anager: O. Hendrick.							/	/	//	//	10/	//	//	///	//,			
Special	Instructions:		7555 400	5-01-1 -												//				
		-,,				1	/	10	14	15	15	las	//	/,	//					
		Sample	1	Matrix	Container Type &		1 /	2/2	14	14%	24	12	4	//	/	//	N/C		7	
Lab No.		Date	Time	(Soiletc)	Preservative*	(specify)	1/9	188	44	78	All	89	/	//	//	/_	INC	OTES		
19	\$526	2.5.13	Am	SOU	glass gav	SID		1	11	1	1									
19	SSZ 7	$\perp \mid \perp \mid$			nor			1	1/	1	_									
20	5528							1		V	`									
21	5529							11	1/	1	_									
22	0530		PM					11	1	1	/						-			
23	<u>SS31</u>							1	1	/	\			12						
24	OC1/	4	+	*	, 1			11	11											
25	ASFI	4		Fragmer	* bay	-					\									
											2									
		_ !																		
														ij.						
		_ /			ă l															
					1															
						21														
	RELINQUISHED BY					CEIVED BY		- 100				Sample	Receip	t Advice	e: (Lab	Use Only	r)			
Name:	Date:	-7	Name:	Searo.			Date:	3/5/	/12			All Sam	ples Red	cieved ir	n Good	Condition	n			
Coffey F	Environments Time:		Compa	iny: Courpf)			Time:		230)		All Docu								
Name:	Date:	-7	Name:		0		Date:					Samples Received Properly Chilled								
Compan	ny: Time:		Compar				Time:						h Pof/Patch No							
*Conta	:		- lan 1/ 1/6	-1 7 Zielask B	- at attack and be		#					#27	£377797							
	iner Type & Preservation Codes: P - Plastic, G- Glass Bot phuric Acid Preserved, I - Ice. ST - Sodium Thiosulfate. N					eservea, L -	Hydrocr	nioric Ac	cid Pres	served,					JI	1147				